References
Aamer, A. M., Yani, L. P. E., & Priyatna, I. M. A. (2021). Data analytics in the supply chain management: Review of machine learning applications in demand forecasting. Operations and Supply Chain Management, 14(1), 1–13. http://doi.org/10.31387/oscm0440281.
Ahn, H. I., Song, Y. C., Olivar, S., Mehta, H., & Tewari, N. (2024). GNN-based probabilistic supply and inventory predictions in supply chain networks. arXiv preprint arXiv:2404.07523.
Ashraf, M., Eltawil, A., & Ali, I. (2024). Disruption detection for a cognitive digital supply chain twin using hybrid deep learning. Operational Research, 24, 23. https://doi.org/10.48550/arXiv.2309.14557.
Ayus, I., Natarajan, N., & Gupta, D. (2023). Comparison of machine learning and deep learning techniques for the prediction of air pollution: A case study from China. Asian Journal of Atmospheric Environment, 17(4), 1–22. https://doi.org/10.1007/s44273-023-00005-w.
Cannas, V. G., Ciano, M. P., Saltalamacchia, M., & Secchi, R. (2024). Artificial intelligence in supply chain and operations management: a multiple case study research. International Journal of Production Research, 62(9), 3333–3360. DOI:10.1080/00207543.2023.2232050.
Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,785–794. https://dl.acm.org/doi/pdf/10.1145/2939672.2939785.
Chopra, S., & Meindl, P. (2016). Supply Chain Management: Strategy, Planning, and Operation. Pearson Education.
Culot, G., Podrecca, M., & Nassimbeni, G. (2024). Artificial intelligence in supply chain management: A systematic literature review of empirical studies and research directions. Computers in Industry, 162, 103813. DOI:10.1016/j.compind.2024.104132.
Douaioui K, Oucheikh R, Benmoussa O, & Mabrouki C. (2024). Machine learning and deep learning models for demand forecasting in supply chain management: a critical review. Applied System Innovation. 7(5):93. https://doi.org/10.3390/asi7050093.
Foumani, N. M., Miller, L., Tan, C. W., Webb, G. I., Forestier, G., & Salehi, M. (2024). Deep learning for time series classification and extrinsic regression: A current survey. ACM Computing Surveys, 56(9), Article 217. https://doi.org/10.48550/arXiv.2302.02515.
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.
Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R., & Schmidhuber, J. (2017). LSTM: A search space odyssey. IEEE Transactions on Neural Networks and Learning Systems, 28(10), 2222–2232. https://doi.org/10.48550/arXiv.1503.04069.
Husna, A. U., Amin, S. H., & Ghasempoor, A. (2023). Demand forecasting using machine learning and deep learning approaches in the retail industry: A comparative study. In Industrial Engineering in the Covid-19 Era (249–264). Springer, Cham. https://doi.org/10.1007/978-3-031-25847-3_24.
Ivanov, D., & Dolgui, A. (2020). Viability of intertwined supply networks: Extending the supply chain resilience angles towards survivability. International Journal of Production Research, 58(10), 2904–2915. https://doi.org/10.1080/00207543.2020.1750727.
Jahin, M. A., Shahriar, A., & Al Amin, M. (2024). MCDFN: Supply chain demand forecasting via an explainable multi-channel data fusion network model. arXiv, 2405.15598. https://doi.org/10.48550/arXiv.2405.15598.
Jozefowicz, R., Zaremba, W., & Sutskever, I. (2015). An empirical exploration of recurrent network architectures. In Proceedings of the 32nd International Conference on Machine Learning (2342–2350). https://dl.acm.org/doi/10.5555/3045118.3045367.
Kassa, A., Kitaw, D., Stache, U., Beshah, B., & Degefu, G. (2023). Artificial intelligence techniques for enhancing supply chain resilience: A systematic literature review, holistic framework, and future research. Computers & Industrial Engineering, 186, 109714. DOI:10.1016/j.cie.2023.109714.
Kouvelis, P., Chambers, C., & Wang, H. (2006). Supply chain management research and production and operations management: review, trends, and opportunities. Production and Operations Management, 15(3), 449–469. https://doi.org/10.1111/j.1937-5956.2006.tb00257.x.
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. DOI:10.1038/nature14539.
Lourenço, V. M., Ogutu, J. O., Rodrigues, R. A., Posekany, A., & Piepho, H. P. (2024). Genomic prediction using machine learning: A comparison of the performance of regularized regression, ensemble, instance-based and deep learning methods on synthetic and empirical data. BMC Genomics, 25(1), 152. https://doi.org/10.1186/s12864-023-09933-x.
Pietukhov, R., Ahtamad, M., Faraji-Niri, M., & El-Said, T. (2023). A hybrid forecasting model with logistic regression and neural networks for improving key performance indicators in supply chains. Supply Chain Analytics, 4, 1–9. https://doi.org/10.1016/j.sca.2023.100041.
Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V., & Gulin, A. (2018). CatBoost: Unbiased boosting with categorical features. In Advances in Neural Information Processing Systems, 31. https://doi.org/10.48550/arXiv.1706.09516.
Rolf, B., Beier, A., Jackson, I., Müller, M., Reggelin, T., Stuckenschmidt, H., & Lang, S. (2024). A review on unsupervised learning algorithms and applications in supply chain management. International Journal of Production Research, 62(15), 1–51. https://doi.org/10.1080/00207543.2024.2390968.
Sangeetha, J. M., & Alfia, K. J. (2024). Financial stock market forecast using evaluated linear regression based machine learning technique. Measurement: Sensors, 31, 100950. https://doi.org/10.1016/j.measen.2023.100950.
Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85–117. https://doi.org/10.48550/arXiv.1404.7828.
Singh, P. K. (2023). Digital transformation in supply chain management: Artificial Intelligence (AI) and Machine Learning (ML) as catalysts for value creation. International Journal of Supply Chain Management, 12(6), 57–63. DOI:10.59160/ijscm.v12i6.6216.
Stranieri, F., & Stella, F. (2022). Comparing deep reinforcement learning algorithms in two-echelon supply chains. arXiv preprint, arXiv:2204.00000. https://doi.org/10.48550/arXiv.2204.09603.
Tirkolaee, E. B., Sadeghi Darvazeh, S., Mansoori Mooseloo, F., & Rezaei Vandchali, H. (2021). Application of machine learning in supply chain management: A comprehensive overview of the main areas. Mathematical Problems in Engineering, 2021, 1–14. DOI:10.1155/2021/1476043.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. In Advances in Neural Information Processing Systems (5998–6008). http://arxiv.org/abs/1706.03762.
Yang, M., Lim, M. K., Qu, Y., Ni, D., & Xiao, Z. (2023). Supply chain risk management with machine learning technology: A literature review and future research directions. Computers & Industrial Engineering, 175, 108859. DOI: 10.1016/j.cie.2022.108859.
Zohdi, M., Rafiee, M., Kayvanfar, V., & Salamiraad, A. (2022). Demand forecasting based machine learning algorithms on customer information: An applied approach. International Journal of Information Technology, 14(3), 1–12. DOI:10.1007/s41870-022-00875-3.