References
Abbasian, M., Sazvar, Z., & Mohammadisiahroudi, M. (2023). A hybrid optimization method to design a sustainable resilient supply chain in a perishable food industry. Environmental science and pollution research, 30(3), 6080-6103. https://doi.org/10.1007/s11356-022-22115-8
Adriano, D. D., Novaes, A. G., & Wangham, M. S. (2019). Providing a dynamic milk-run vehicle routing using vehicular ad hoc networks. Proceedings of the 9th ACM Symposium on Design and Analysis of Intelligent Vehicular Networks and Applications. https://doi.org/10.1145/3345838.335600
Ariton, L. (2021, January 20). A Thorough Introduction To ARIMA Models. Analytics Vidhya. https://medium.com/analytics-vidhya/a-thorough-introduction-to-arima-models-987a24e9ff71
Awad, M., Ndiaye, M., & Osman, A. (2021). Vehicle routing in cold food supply chain logistics: a literature review. The International Journal of Logistics Management, 32(2), 592-617. https://doi.org/10.1108/IJLM-02-2020-0092
Bocewicz, G., Nielsen, P., & Banaszak, Z. (2019). Declarative modeling of a milk-run vehicle routing problem for split and merge supply streams scheduling. Information Systems Architecture and Technology: Proceedings of 39th International Conference on Information Systems Architecture and Technology–ISAT 2018: Part II,
Boudahri, F., Ahmed, A. B., Belkaid, F., & Hacene, R. B. (2022). Modelling and optimization for improving the performance of agri-foods supply chain for milk products. International Journal of Mathematical Models and Methods in Applied Sciences, 16, 83-88. https://doi.org/10.46300/9101.2022.16.15
Buics, L & Süle, E. (2020). Service process excellence in public services. Proceedings of the ENTRENOVA -ENTerprise REsearch InNOVAtion Conference (Online). Vol. 6. No. 1. pp. 173-186.
Chauhan, N. S. (2020, November 29). Introduction to RNN and LSTM. The AI Dream. https://www.theaidream.com/post/introduction-to-rnn-and-lstm
Choi, Y., & Choi, J. W. (2021). A study of job involvement prediction using machine learning technique. International Journal of Organizational Analysis, 29(3), 788-800. https://doi.org/10.1108/IJOA-05-2020-2222
Elgarej, M., Mansouri, K., & Youssfi, M. (2020). Modelling of Logistics Monitoring System for Milk Collection Based on Swarm Intelligence. International Journal of Smart Vehicles and Smart Transportation (IJSVST), 3(2), 59-82. https://doi.org/10.4018/IJSVST.2020070104
Elufioye, O. A., Ike, C. U., Odeyemi, O., Usman, F. O., & Mhlongo, N. Z. (2024). Ai-Driven predictive analytics in agricultural supply chains: a review: assessing the benefits and challenges of ai in forecasting demand and optimizing supply in agriculture. Computer Science & IT Research Journal, 5(2), 473-497.https://doi.org/10.51594/csitrj.v5i2.817
Falatouri, T., Darbanian, F., Brandtner, P., & Udokwu, C. (2022). Predictive analytics for demand forecasting–a comparison of SARIMA and LSTM in retail SCM. Procedia Computer Science, 200, 993-1003. https://doi.org/10.1016/j.procs.2022.01.298
Fang, C., & Stone, W. Z. (2021). An ecosystem for the dairy logistics supply chain with blockchain technology. 2021 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME). https://doi.org/10.1109/ICECCME52200.2021.9591146
Gheisariha, E., Etebari, F., Vahdani, B., & Tavakkoli-Moghaddam, R. (2023). Scheduling and routing of multiple heterogeneous vehicles in a milk collection problem with blending in compartments and time windows. International Journal of Systems Science: Operations & Logistics, 10(1), 2190852. https://doi.org/10.1080/23302674.2023.2190852
Ghosh, D., & Mondal, S. (2018). An integrated production-distribution planning of dairy industry–a case study. International Journal of Logistics Systems and Management, 30(2), 225-245. https://doi.org/10.1504/IJLSM.2018.091963
Gyurián, N. & Gyurián Nagy, N. (2022). The evolution of environmental taxes in Hungary and Slovakia. Acta Oeconomica Universitatis Selye. 11. 10.36007/Acta.2022.11.1.4.
Hossain, S., Jahan, M., & Khatun, F. (2022). Current status of dairy products in Bangladesh: A review on supply and utilization. Int J Bus Manage Soc Res, 11, 609-18. https://doi.org/10.18801/ijbmsr.110222.65
Huerta-Soto, R., Ramirez-Asis, E., Tarazona-Jiménez, J., Nivin-Vargas, L., Norabuena-Figueroa, R., Guzman-Avalos, M., & Reyes-Reyes, C. (2023). Predictable inventory management within dairy supply chain operations. International Journal of Retail & Distribution Management. https://doi.org/10.1108/IJRDM-01-2023-0051
Jachimczyk, B., Tkaczyk, R., Piotrowski, T., Johansson, S., & Kulesza, W. (2021). IoT-based dairy supply chain-an ontological approach. Elektronika ir Elektrotechnika, 27(1), 71-83. https://doi.org/10.5755/j02.eie.27612
Kashyap, A., Shukla, O. J., Jha, B. K., Ramtiyal, B., & Soni, G. (2023). Enhancing sustainable dairy industry growth through cold-supply-chain-integrated production forecasting. Sustainability, 15(22), 16102. https://doi.org/10.3390/su152216102
Kelley, S. (2022, September 7). How to Implement Column Generation for Vehicle Routing. Medium. https://medium.com/@shannon-optimizes/how-to-implement-column-generation-for-vehicle-routing-bdb8027c957f
Kumar, S., Barman, A. G., & Kumar, V. (2022). Study and Analysis of Milk-Run Model for Minimum Cost Under Upstream Supply Chain of a Dairy Plant. Recent Advances in Manufacturing, Automation, Design and Energy Technologies: Proceedings from ICoFT 2020. https://doi.org/10.1007/978-981-16-4222-7_25
Latorre-Biel, J. I., Ferone, D., Juan, A. A., & Faulin, J. (2021). Combining sim heuristics with Petri nets for solving the stochastic vehicle routing problem with correlated demands. Expert Systems with Applications, 168, 114240. https://doi.org/10.1016/j.eswa.2020.114240
Li, T., & Donta, P. K. (2023). Predicting green supply chain impact with snn-stacking model in digital transformation context. Journal of Organizational and End User Computing (JOEUC), 35(1), 1-19.https: doi.org/ 10.4018/JOEUC.334109
Liu, A., Zhu, Q., Xu, L., Lu, Q., & Fan, Y. (2021). Sustainable supply chain management for perishable products in emerging markets: An integrated location-inventory-routing model. Transportation Research Part E: Logistics and Transportation Review, 150, 102319. https://doi.org/10.1016/j.tre.2021.102319
Malairajan, R., Ganesh, K., Punnniyamoorthy, M., & Anbuudayasankar, S. (2013). Decision support system for real time vehicle routing in indian dairy industry: A case study. International Journal of Information Systems and Supply Chain Management (IJISSCM), 6(4), 77-101. https://doi.org/10.4018/ijisscm.2013100105
Malik, M., Gahlawat, V. K., Mor, R. S., Dahiya, V., & Yadav, M. (2022). Application of Optimization Techniques in the Dairy Supply Chain: A Systematic Review. Logistics, 6(4), Article 4. https://doi.org/10.3390/logistics6040074
O’Callaghan, S., O’Connor, D., & Goulding, D. (2018). Distance optimisation of milk transportation from dairy farms to a processor over a national road network. Journal of International Scientific Publications, 6, 279-296.
Palhares, R. A., & Araújo, M. (2018). Vehicle routing: application of travelling salesman problem in a dairy. 2018 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM). https://doi.org/ 10.1109/IEEM.2018.8607472
Pan, W., Miao, L., & Lin, Z. (2023). Analysis of Enterprise Data-Driven Innovation Diffusion Supervision System Based on the Perspective of Green Supply Chain. Journal of Organizational and End User Computing (JOEUC), 35(1), 1-28. https: doi.org/10.4018/JOEUC.333894
Pereira, M. T., Lopes, C., Ferreira, L. P., & Oliveira, S. (2021). A CVRP Model for an In-Plant Milk Run System. Operational Research: IO 2019, Tomar, Portugal, July 22–24, 374, 109. https://doi.org/10.1007/978-3-030-85476-8_9
Rautela, A., Sharma, S., & Bhardwaj, P. (2017). Vehicle routing approach for an efficient distribution: a case of a state-owned Indian cooperative dairy. International Journal of Procurement Management, 10(6), 776-789. https://doi.org/10.1504/IJPM.2017.087319
Ravichandran, M., Naresh, R., & Kandasamy, J. (2020). Supply chain routing in a diary industry using heterogeneous fleet system: simulation-based approach. Journal of The Institution of Engineers (India): Series C, 101(5), 891-911. https://doi.org/10.1007/s40032-020-00588-1
Rinaldi, M., Bottani, E., Solari, F., & Montanari, R. (2020). The milk collection problem with time constraint: An optimization study integrating simulation. Proceedings of the 6th International Food Operations and Processing Simulation Workshop (FoodOPS 2020). https://doi.org/10.46354/i3m.2020.foodops.002
Scaria, C. T., & Joseph, J. (2014). Optimization of transportation route for a milk dairy. International Journal of Engineering Research & Technology, 3(11), 854-859. https://doi.org/IJERTV3IS110577
Shah, D. (2016). Synthesis of Agribusiness Success Models Under Co-Operative and Private Sector in India. Available at SSRN 2885224. http://dx.doi.org/10.2139/ssrn.2885224
Shamout, M. D. (2020). Supply chain data analytics and supply chain agility: a fuzzy sets (fsQCA) approach. International Journal of Organizational Analysis, 28(5), 1055-1067. https://doi.org/10.1108/IJOA-05-2019-1759
Shamsuddoha, M., Nasir, T., & Ibne Hossain, N. U. (2023). Integrating Circular Economy and Reverse Logistics for Achieving Sustainable Dairy Operations. In Data Analytics for Supply Chain Networks (pp. 211-226). Springer. https://doi.org/10.1007/978-3-031-29823-3_8
Torres Guerra, K., Villanueva, C., López Soriano, M., & Moya, E. (2013). Recolección y comercialización de leche en la subcuenca del río Copán, Honduras: La experiencia de los ganaderos en la conformación del Centro de recolección y enfriamiento de leche ‘Jorge Bueso. Serie Técnica. Boletín Técnico.
Zhang, Y., & Shankar, A. (2023). Enhancing Supply Chain Transparency and Risk Management Using CNN-LSTM With Transfer Learning. Journal of Organizational and End User Computing (JOEUC), 35(1), 1-22. https: doi.org/10.4018/JOEUC.333472
Copyright (c) 2024 Sándor Remsei, Golam Sakaline, Md. Mahraj Uddin, László Buics