Assessment of dynamic water yield using multi scenario of LULC in Cisadane Watershed West Java, Indonesia

Turmudi Turmudi, Irmadi Nahib, Wiwin Ambarwulan, Jaka Suryanta, Nawa Suwedi, Yatin Suwarno, Reni Sulistyowati, Darmawan Listya Cahya, Lena Sumargana, Bambang Winarno, Fanny Meliani, Ilvi Fauziyah Cahyaningtiyas, Teguh Arif Pianto, Harun Idham Akbar, Yulianingsani Yulianingsani

Article ID: 9375
Vol 8, Issue 15, 2024


Abstract


Uncontrolled economic development often leads to land degradation, a decline in ecosystem services, and negative impacts on community welfare. This study employs water yield (WY) modeling as a method for environmental management, aiming to provide a comprehensive understanding of the relationship between Land Use Land Cover (LULC), Land Use Intensity (LUI), and WY to support sustainable natural resource management in the Cisadane Watershed, Indonesia. The objectives include: (1) analyzing changes in WY for 2010, 2015, and 2021; (2) predicting WY for 2030 and 2050 under two scenarios—Business as Usual (BAU) and Protected Forest Area (PFA); (3) assessing the impacts of LULC and climate change on WY; and (4) exploring the relationship between LUI and WY. The Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) model calculates actual and predicted WY conditions, while the Coupling Coordination Degree (CCD) analyzes the LULC-WY relationship. Results indicate that the annual WY in 2021 was 215.8 × 108 m³, reflecting a 30.42% increase from 2010. Predictions show an increasing trend in WY under both scenarios for 2030 and 2050 with different magnitudes. Rainfall contributes 88.99% more dominantly to WY than LULC. Additionally, around 50% of districts exhibited unbalanced coordination between LUI and WY in 2010 and 2020. This study reveals the importance of ESs in sustainable watershed management amidst increasing demand for natural resources due to population growth.


Keywords


coupling coordination degree model; InVEST; land use intensity; prediction

Full Text:

PDF


References


Ambarwulan, W., Nahib, I., Widiatmaka, W., Suryanta, J., Munajati, S. L., Suwarno, Y., Turmudi, T., Darmawan, M., & Sutrisno, D. (2021). Using Geographic Information Systems and the Analytical Hierarchy Process for Delineating Erosion-Induced Land Degradation in the Middle Citarum Sub-Watershed, Indonesia. Frontiers in Environmental Science, 9. https://doi.org/10.3389/fenvs.2021.710570

Ambarwulan, W., Yulianto, F., Widiatmaka, W., Rahadiati, A., Tarigan, S. D., Firmansyah, I., & Hasibuan, M. A. S. (2023). Modelling land use/land cover projection using different scenarios in the Cisadane Watershed, Indonesia: Implication on deforestation and food security. The Egyptian Journal of Remote Sensing and Space Science, 26(2), 273–283. https://doi.org/10.1016/j.ejrs.2023.04.002

Astuti, I. S., Sahoo, K., Milewski, A., & Mishra, D. R. (2019). Impact of Land Use Land Cover (LULC) Change on Surface Runoff in an Increasingly Urbanized Tropical Watershed. Water Resources Management, 33(12), 4087–4103. https://doi.org/10.1007/s11269-019-02320-w

Bai, Y., Ochuodho, T. O., & Yang, J. (2019). Impact of land use and climate change on water-related ecosystem services in Kentucky, USA. Ecological Indicators, 102, 51–64. https://doi.org/10.1016/j.ecolind.2019.01.079

Baiya, B., & Hashim, M. (2020). Modelling Catchment Land Use Changes against Water Yield with Satellite Multi-Temporal Data. IOP Conference Series: Earth and Environmental Science, 540(1), 012060. https://doi.org/10.1088/1755-1315/540/1/012060

Balist, J., Malekmohammadi, B., Jafari, H. R., Nohegar, A., & Geneletti, D. (2022). Detecting land use and climate impacts on water yield ecosystem service in arid and semi-arid areas. A study in Sirvan River Basin-Iran. Applied Water Science, 12(1), 4. https://doi.org/10.1007/s13201-021-01545-8

BIG. (2021, January 23). DEMNAS. Https://Tanahair.Indonesia.Go.Id/Demnas/#/Demnas.

Budyko, M. I., & Miller, D. H. (1974). Climate and life.

Chen, Y., Lu, H., Li, J., & Xia, J. (2020). Effects of land use cover change on carbon emissions and ecosystem services in Chengyu urban agglomeration, China. Stochastic Environmental Research and Risk Assessment, 34(8), 1197–1215. https://doi.org/10.1007/s00477-020-01819-8

Clerici, N., Cote-Navarro, F., Escobedo, F. J., Rubiano, K., & Villegas, J. C. (2019). Spatio-temporal and cumulative effects of land use-land cover and climate change on two ecosystem services in the Colombian Andes. Science of The Total Environment, 685, 1181–1192. https://doi.org/10.1016/j.scitotenv.2019.06.275

Deng, H., Yang, J., & Wang, P. (2023). Study on Coupling Coordination Relationship between Urban Development Intensity and Water Environment Carrying Capacity of Chengdu–Chongqing Economic Circle. Sustainability, 15(9), 7111. https://doi.org/10.3390/su15097111

Dennedy-Frank, P. J., Muenich, R. L., Chaubey, I., & Ziv, G. (2016). Comparing two tools for ecosystem service assessments regarding water resources decisions. Journal of Environmental Management, 177, 331–340. https://doi.org/10.1016/j.jenvman.2016.03.012

Dong, F., & Li, W. (2021). Research on the coupling coordination degree of “upstream-midstream-downstream” of China’s wind power industry chain. Journal of Cleaner Production, 283, 124633. https://doi.org/10.1016/j.jclepro.2020.124633

Fan, Z., Luo, Q., Yu, H., Liu, J., & Xia, W. (2023). Spatial–Temporal Evolution of the Coupling Coordination Degree between Water and Land Resources Matching and Cultivated Land Use Eco-Efficiency: A Case Study of the Major Grain-Producing Areas in the Middle and Lower Reaches of the Yangtze River. Land, 12(5), 982. https://doi.org/10.3390/land12050982

Fang, Z., Ding, T., Chen, J., Xue, S., Zhou, Q., Wang, Y., Wang, Y., Huang, Z., & Yang, S. (2022). Impacts of land use/land cover changes on ecosystem services in ecologically fragile regions. Science of The Total Environment, 831, 154967. https://doi.org/10.1016/j.scitotenv.2022.154967

Fatkhuroyan, & TrinahWati. (2018). Accuracy Assessment of Global Satellite Mapping of Precipitation (GSMaP) Product Over Indonesian Maritime Continent. IOP Conference Series: Earth and Environmental Science, 187, 012060. https://doi.org/10.1088/1755-1315/187/1/012060

Felipe-Lucia, M. R., Soliveres, S., Penone, C., Fischer, M., Ammer, C., Boch, S., Boeddinghaus, R. S., Bonkowski, M., Buscot, F., Fiore-Donno, A. M., Frank, K., Goldmann, K., Gossner, M. M., Hölzel, N., Jochum, M., Kandeler, E., Klaus, V. H., Kleinebecker, T., Leimer, S., … Allan, E. (2020). Land-use intensity alters networks between biodiversity, ecosystem functions, and services. Proceedings of the National Academy of Sciences, 117(45), 28140–28149. https://doi.org/10.1073/pnas.2016210117

Fu, B. P. (1981). On the calculation of the evaporation from land surface. Scientia Atmospherica Sinica, 5(1), 23.

Fu, B., Zhang, L., Xu, Z., Zhao, Y., Wei, Y., & Skinner, D. (2015). Ecosystem services in changing land use. Journal of Soils and Sediments, 15(4), 833–843. https://doi.org/10.1007/s11368-015-1082-x

Ge, K., Wang, Y., Ke, S., & Lu, X. (2023). Research on the spatiotemporal evolution and driving mechanism of coupling coordinating between green transition of urban land use and urban land use efficiency: a case study of the Yangtze River Delta Region in China. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-023-31072-9

Gomes, E., Inácio, M., Bogdzevič, K., Kalinauskas, M., Karnauskaitė, D., & Pereira, P. (2021). Future scenarios impact on land use change and habitat quality in Lithuania. Environmental Research, 197, 111101. https://doi.org/10.1016/j.envres.2021.111101

Guan, D., Deng, Z., Zhou, L., Fan, X., Yang, W., Peng, G., Zhu, X., & Zhou, L. (2023). How can multiscenario flow paths of water supply services be simulated? A supply-flow-demand model of ecosystem services across a typical basin in China. Science of The Total Environment, 893, 164770. https://doi.org/10.1016/j.scitotenv.2023.164770

Hou, J., Yan, D., Qin, T., Liu, S., Yan, S., Li, J., Abebe, S. A., & Cao, X. (2022). Evolution and attribution of the water yield coefficient in the Yiluo river basin. Frontiers in Environmental Science, 10. https://doi.org/10.3389/fenvs.2022.1067318

Jew, E. K. K., Burdekin, O. J., Dougill, A. J., & Sallu, S. M. (2019). Rapid land use change threatens provisioning ecosystem services in miombo woodlands. Natural Resources Forum, 43(1), 56–70. https://doi.org/10.1111/1477-8947.12167

Lepcha, P. T., Pandey, P. K., & Pandey, V. (2024). Quantification of the impact of land cover and climate change on water and sediment yield in sub-tropical Himalayas in upstream Teesta river basin, Sikkim. Remote Sensing Applications: Society and Environment, 34, 101146. https://doi.org/10.1016/j.rsase.2024.101146

Li, Q., Yang, L., Jiao, H., & He, Q. (2024). Spatiotemporal Analysis of the Impacts of Land Use Change on Ecosystem Service Value: A Case from Guiyang, China. Land, 13(2), 211. https://doi.org/10.3390/land13020211

Li, S., Yang, H., Lacayo, M., Liu, J., & Lei, G. (2018). Impacts of Land-Use and Land-Cover Changes on Water Yield: A Case Study in Jing-Jin-Ji, China. Sustainability, 10(4), 960. https://doi.org/10.3390/su10040960

Liang, J., Li, S., Li, X., Li, X., Liu, Q., Meng, Q., Lin, A., & Li, J. (2021). Trade-off analyses and optimization of water-related ecosystem services (WRESs) based on land use change in a typical agricultural watershed, southern China. Journal of Cleaner Production, 279, 123851. https://doi.org/10.1016/j.jclepro.2020.123851

Liu, W., Wu, J., Fan, H., Duan, H., Li, Q., Yuan, Y., & Zhang, H. (2017). Estimations of evapotranspiration in an age sequence of Eucalyptus plantations in subtropical China. PLOS ONE, 12(4), e0174208. https://doi.org/10.1371/journal.pone.0174208

Liu, Y., Zhang, Y., Yu, M., & Dai, C. (2024). Impacts of Climate and Land Use/Land Cover Change on Water Yield Services in Heilongjiang Province. Water, 16(15), 2113. https://doi.org/10.3390/w16152113

Liu, Z., Shi, M., Wu, H., Jiang, P., Zhang, H., He, P., Zheng, K., Dong, T., & Zhang, Y. (2023). Quantity and spatial imbalance of supply and demand for water yield services in terrestrial ecosystems under different future land use scenarios in Xinjiang, China. Frontiers in Ecology and Evolution, 11. https://doi.org/10.3389/fevo.2023.1094409

Lu, C., Sidai, G., & Yangli, L. (2024). Discerning changes and drivers of water yield ecosystem service: A case study of Chongqing-Chengdu District, Southwest China. Ecological Indicators, 160, 111767. https://doi.org/10.1016/j.ecolind.2024.111767

Ma, X., Liu, S., Guo, L., Zhang, J., Feng, C., Feng, M., & Li, Y. (2024). Evolution and Analysis of Water Yield under the Change of Land Use and Climate Change Based on the PLUS-InVEST Model: A Case Study of the Yellow River Basin in Henan Province. Water, 16(17), 2551. https://doi.org/10.3390/w16172551

Malinga, R., Gordon, L. J., Jewitt, G., & Lindborg, R. (2015). Mapping ecosystem services across scales and continents – A review. Ecosystem Services, 13, 57–63. https://doi.org/10.1016/j.ecoser.2015.01.006

Mo, W., Zhao, Y., Yang, N., Xu, Z., Zhao, W., & Li, F. (2021). Effects of Climate and Land Use/Land Cover Changes on Water Yield Services in the Dongjiang Lake Basin. ISPRS International Journal of Geo-Information, 10(7), 466. https://doi.org/10.3390/ijgi10070466

Muhammed, H. H., Mustafa, A. M., & Kolerski, T. (2021). Hydrological responses to large-scale changes in land cover of river watershed: Review. Journal of Water and Land Development, 108–121. https://doi.org/10.24425/jwld.2021.138166

Nahib, I., Ambarwulan, W., Rahadiati, A., Munajati, S. L., Prihanto, Y., Suryanta, J., Turmudi, T., & Nuswantoro, A. C. (2021). Assessment of the Impacts of Climate and LULC Changes on the Water Yield in the Citarum River Basin, West Java Province, Indonesia. Sustainability, 13(7), 3919. https://doi.org/10.3390/su13073919

Nahib, I., Ambarwulan, W., Sutrisno, D., Darmawan, M., Suwarno, Y., Rahadiati, A., Suryanta, J., Prihanto, Y., Rudiastuti, A. W., & Gaol, Y. L. (2023). Spatial-temporal heterogeneity and driving factors of water yield services in Citarum river basin unit, West Java, Indonesia. Archives of Environmental Protection, 3–24.

Nahib, I., Wahyudin, Y., Widiatmaka, W., Ambarwulan, W., Amhar, F., Suwedi, N., Darmawan, M., Suryanta, J., Pranoto, B., Ramadhani, F., Nugroho, N. P., Cahyana, D., & Karolinoerita, V. (2024). Evaluating the effects of changes in land use and assessing the value of ecosystem services in the Cisadane Watershed, Banten Province, Indonesia. Journal of Infrastructure, Policy and Development, 8(6), 3788. https://doi.org/10.24294/jipd.v8i6.3788

Ningrum, A., Setiawan, Y., & Tarigan, S. D. (2022). Annual Water Yield Analysis with InVEST Model in Tesso Nilo National Park, Riau Province. IOP Conference Series: Earth and Environmental Science, 950(1), 012098. https://doi.org/10.1088/1755-1315/950/1/012098

Nugroho, N. P. (2017). Estimasi hasil air dari daerah tangkapan air Danau Rawa Pening dengan menggunakan Model Invest. Majalah Ilmiah Globë, 19(2), 157–166.

Qi, Y., Wang, R., Shen, P., Ren, S., & Hu, Y. (2023). Impacts of Land Use Intensity on Ecosystem Services: A Case Study in Harbin City, China. Sustainability, 15(20), 14877. https://doi.org/10.3390/su152014877

Reheman, R., Kasimu, A., Duolaiti, X., Wei, B., & Zhao, Y. (2023). Research on the Change in Prediction of Water Production in Urban Agglomerations on the Northern Slopes of the Tianshan Mountains Based on the InVEST–PLUS Model. Water, 15(4), 776. https://doi.org/10.3390/w15040776

Ridwansyah, I., Pawitan, H., Sinukaban, N., & Hidayat, Y. (2014). Watershed Modeling with ArcSWAT and SUFI2 In Cisadane Catchment Area: Calibration and Validation of River Flow Prediction. International Journal of Science and Engineering, 6(2). https://doi.org/10.12777/ijse.6.2.92-101

Rose, T., Kremen, C., Thrupp, A., Gemmill-Herren, B., Graub, B., Azzu, N., Antunes, V., Bruteig, I. E., Buchori, D., & Donaldson, J. (2015). Policy analysis paper: mainstreaming of biodiversity and ecosystem services with a focus on pollination. United Nations Food and Agriculture Organization (FAO) with the contribution of participants at the “Policies for Pollination Management” Worksh.

Sharp, R., Douglass, J., Wolny, S., Arkema, K., Bernhardt, J., Bierbower, W., Chaumont, N., Denu, D., Fisher, D., & Glowinski, K. (2020). InVEST 3.8. 7. User’s Guide. The Natural Capital Project, Standford University, University of Minnesota, The Natural Capital Project. Stanford University, University of Minnesota, The Nature Conservancy, and ….

Soplanit, R., & Silahooy, C. (2012). Dampak perubahan penggunaan lahan terhadap aliran permukaan, aliran bawah permukaan dan aliran dasar di DAS BatuGajah Kota Ambon. Agrologia, 1(2), 288724.

Soplanit, R., & Silahooy, C. (2018). Dampak Perubahan Penggunaan Lahan Terhadap Aliran Permukaan, Aliran Bawah Permukaan Dan Aliran Dasar Di Das Batugajah Kota Ambon. Agrologia, 1(2). https://doi.org/10.30598/a.v1i2.291

Sriyana, I., De Gijt, J. G., Parahyangsari, S. K., & Niyomukiza, J. B. (2020). Watershed management index based on the village watershed model (VWM) approach towards sustainability. International Soil and Water Conservation Research, 8(1), 35–46. https://doi.org/10.1016/j.iswcr.2020.01.003

Strassburg, B. B. N., Iribarrem, A., Beyer, H. L., Cordeiro, C. L., Crouzeilles, R., Jakovac, C. C., Braga Junqueira, A., Lacerda, E., Latawiec, A. E., Balmford, A., Brooks, T. M., Butchart, S. H. M., Chazdon, R. L., Erb, K.-H., Brancalion, P., Buchanan, G., Cooper, D., Díaz, S., Donald, P. F., … Visconti, P. (2020). Global priority areas for ecosystem restoration. Nature, 586(7831), 724–729. https://doi.org/10.1038/s41586-020-2784-9

Suryanta, J., Nahib, I., Ramadhani, F., Rifaie, F., Suwedi, N., Karolinoerita, V., Cahyana, D., Amhar, F., & Suprajaka, S. (2024). Modelling and dynamic water analysis for the ecosystem service in the Central Citarum watershed, Indonesia. Journal of Water and Land Development, 122–137. https://doi.org/10.24425/jwld.2024.149114

Wang, W., & Zhang, J. (2023). Measuring the coupling coordination of land use functions and influencing factors: a case study in Beijing. Frontiers in Ecology and Evolution, 11. https://doi.org/10.3389/fevo.2023.1159152

Wang, X., Liu, G., Lin, D., Lin, Y., Lu, Y., Xiang, A., & Xiao, S. (2022). Water yield service influence by climate and land use change based on InVEST model in the monsoon hilly watershed in South China. Geomatics, Natural Hazards and Risk, 13(1), 2024–2048. https://doi.org/10.1080/19475705.2022.2104174

Wei, P., Chen, S., Wu, M., Deng, Y., Xu, H., Jia, Y., & Liu, F. (2021). Using the InVEST Model to Assess the Impacts of Climate and Land Use Changes on Water Yield in the Upstream Regions of the Shule River Basin. Water, 13(9), 1250. https://doi.org/10.3390/w13091250

Wen, Z., Zheng, H., Smith, J. R., Zhao, H., Liu, L., & Ouyang, Z. (2019). Functional diversity overrides community-weighted mean traits in linking land-use intensity to hydrological ecosystem services. Science of The Total Environment, 682, 583–590. https://doi.org/10.1016/j.scitotenv.2019.05.160

Xu, Y., Tang, H., Wang, B., & Chen, J. (2016). Effects of land-use intensity on ecosystem services and human well-being: a case study in Huailai County, China. Environmental Earth Sciences, 75(5), 416. https://doi.org/10.1007/s12665-015-5103-2

Yang, J., Xie, B., Zhang, D., & Tao, W. (2021). Climate and land use change impacts on water yield ecosystem service in the Yellow River Basin, China. Environmental Earth Sciences, 80(3), 72. https://doi.org/10.1007/s12665-020-09277-9

Zhang, H., Wang, Y., Wang, C., Yang, J., & Yang, S. (2022). Coupling analysis of environment and economy based on the changes of ecosystem service value. Ecological Indicators, 144, 109524. https://doi.org/10.1016/j.ecolind.2022.109524

Zhang, X., Zhang, G., Long, X., Zhang, Q., Liu, D., Wu, H., & Li, S. (2021). Identifying the drivers of water yield ecosystem service: A case study in the Yangtze River Basin, China. Ecological Indicators, 132, 108304. https://doi.org/10.1016/j.ecolind.2021.108304

Zhang, Z., & Li, Y. (2020). Coupling coordination and spatiotemporal dynamic evolution between urbanization and geological hazards–A case study from China. Science of The Total Environment, 728, 138825. https://doi.org/10.1016/j.scitotenv.2020.138825

Zheng, H., Peng, J., Qiu, S., Xu, Z., Zhou, F., Xia, P., & Adalibieke, W. (2022). Distinguishing the impacts of land use change in intensity and type on ecosystem services trade-offs. Journal of Environmental Management, 316, 115206. https://doi.org/10.1016/j.jenvman.2022.115206

Zhou, G., Wei, X., Chen, X., Zhou, P., Liu, X., Xiao, Y., Sun, G., Scott, D. F., Zhou, S., Han, L., & Su, Y. (2015). Global pattern for the effect of climate and land cover on water yield. Nature Communications, 6(1), 5918. https://doi.org/10.1038/ncomms6918

Zhu, S., Huang, J., & Zhao, Y. (2022). Coupling coordination analysis of ecosystem services and urban development of resource-based cities: A case study of Tangshan city. Ecological Indicators, 136, 108706. https://doi.org/10.1016/j.ecolind.2022.108706




DOI: https://doi.org/10.24294/jipd9375

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Authors

License URL: https://creativecommons.org/licenses/by/4.0/

This site is licensed under a Creative Commons Attribution 4.0 International License.