Seeds of change: A bibliometric study on sustainable technologies and business strategies in agriculture

Rocco Pavesi, Luigi Orsi, Luca Zanderighi

Article ID: 9051
Vol 8, Issue 12, 2024

VIEWS - 29 (Abstract) 9 (PDF)

Abstract


The transition to sustainable agricultural practices is critical in the face of escalating climate challenges. Despite significant advances, the integration of green technologies within agribusiness remains underexplored. This study undertakes a comprehensive bibliometric analysis, utilizing data from the Web of Science Core Collection (1990–2023), to elucidate the integration of green technologies within agribusiness strategies. The research highlights key trends, influential authors, prominent journals, and significant thematic clusters, including biogas, biochar, biotech remediation, sustainable agriculture transition, low-carbon agriculture, and green strategies. By employing R, Bibliometrix, and VOSviewer, the study provides a nuanced understanding of the research landscape, emphasizing the critical role of strategic planning, policy frameworks, technological innovation, and interdisciplinary approaches in promoting sustainable agricultural development. The findings underscore the growing scholarly interest in sustainable practices, driven by global initiatives such as the UN’s 2030 Agenda and the Paris Agreement. This study contributes to the literature by offering qualitative insights and policy implications, highlighting the necessity for a holistic integration of green technologies to enhance the environmental and economic viability of agribusinesses.


Keywords


green technologies; sustainable agriculture; agribusiness strategies; bibliometric analysis

Full Text:

PDF


References


Aggarwal, R., Chandel, S. S., Yadav, P., & Khosla, A. (2021). Perspective of new innovative biogas technology policy implementation for sustainable development in India. Energy Policy, 159, 112666. https://doi.org/10.1016/j.enpol.2021.112666

Ali, S., Yan, Q., Razzaq, A. et al. Modeling factors of biogas technology adoption: a roadmap towards environmental sustainability and green revolution. Environmental Science and Pollution Research 30, 11838–11860 (2023). https://doi.org/10.1007/s11356-022-22894-0

Alibardi, L., Astrup, T. F., Asunis, F., Clarke, W. P., De Gioannis, G., Dessì, P., Lens, P. N., Lavagnolo, M. C., Lombardi, L., Muntoni, A., Pivato, A., Polettini, A., Pomi, R., Rossi, A., Spagni, A., & Spiga, D. (2020). Organic waste biorefineries: Looking towards implementation. Waste Management, 114, 274-286. https://doi.org/10.1016/j.wasman.2020.07.010

Appio, F. P., Cesaroni, F., & Di Minin, A. (2014). Visualizing the structure and bridges of the intellectual property management and strategy literature: a document co-citation analysis. Scientometrics, 101(1), 623–661. https://doi.org/10.1007/s11192-014-1329-0

Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959-975. https://doi.org/10.1016/j.joi.2017.08.007

Arthur, R., Baidoo, M. F., Osei, G., Boamah, L., Kwofie, S., & Wang, X. (2020). Evaluation of potential feedstocks for sustainable biogas production in Ghana: Quantification, energy generation, and CO2 abatement. Cogent Environmental Science, 6(1). https://doi.org/10.1080/23311843.2020.1868162

Baležentis, T., Li, T., Streimikiene, D., & Baležentis, A. (2016). Is the Lithuanian economy approaching the goals of sustainable energy and climate change mitigation? Evidence from DEA-based environmental performance index. Journal of Cleaner Production, 116, 23-31. https://doi.org/10.1016/j.jclepro.2015.12.088

Barbier, E. B. (2020). Is green rural transformation possible in developing countries? World Development, 131, 104955. https://doi.org/10.1016/j.worlddev.2020.104955

Bhatia, R.K., Ramadoss, G., Jain, A.K. et al. Conversion of Waste Biomass into Gaseous Fuel: Present Status and Challenges in India. BioEnergy Research. 13, 1046–1068 (2020).

Blagojev, N., Vasić, V., Kukić, D., Šćiban, M., Prodanović, J., & Bera, O. (2021). Modelling and efficiency evaluation of the continuous biosorption of Cu(II) and Cr(VI) from water by agricultural waste materials. Journal of Environmental Management, 281, 111876. https://doi.org/10.1016/j.jenvman.2020.111876

Boyack, K. W., & Klavans, R. (2010). Co‐citation analysis, bibliographic coupling, and direct citation: Which citation approach represents the research front most accurately? Journal of the Association for Information Science and Technology, 61(12), 2389–2404. https://doi.org/10.1002/asi.21419

Caniëls, M. C. J., & Romijn, H. A. (2008). Strategic niche management: towards a policy tool for sustainable development. Technology Analysis & Strategic Management, 20(2), 245–266. https://doi.org/10.1080/09537320701711264

Chen, L., Zhao, L., Ren, C., & Wang, F. (2012). The progress and prospects of rural biogas production in China. Energy Policy, 51, 58-63. https://doi.org/10.1016/j.enpol.2012.05.052

Chen, Y., Wang, X., Liu, Z., Cui, J., Osmani, M., & Demian, P. (2023). Exploring building information modeling (bim) and internet of things (iot) integration for sustainable building. Buildings, 13(2), 288. https://doi.org/10.3390/buildings13020288

Cicatelli, A., Guarino, F., Baldan, E. et al. Genetic and biochemical characterization of rhizobacterial strains and their potential use in combination with chelants for assisted phytoremediation. Environmental Science amd Pollution Research, 24, 8866–8878 (2017). https://doi.org/10.1007/s11356-016-7982-5

Coleman, S., Dewhurst, T., Fredriksson, D. W., T., A., Cole, K. L., MacNicoll, M., Laufer, E., & Brady, D. C. (2022). Quantifying baseline costs and cataloging potential optimization strategies for kelp aquaculture carbon dioxide removal. Frontiers in Marine Science, 9, 966304. https://doi.org/10.3389/fmars.2022.966304

Cui, H., Zhao, T., Tao, P. (2019). Evolutionary Game Study on the Development of Green Agriculture in China Based on Ambidexterity Theory Perspective. Polish Journal of Environmental Studies, 28(3), 1093-1104. https://doi.org/10.15244/pjoes/87139

Cundy, A., Bardos, R., Puschenreiter, M., Mench, M., Bert, V., Friesl-Hanl, W., Müller, I., Li, X., Weyens, N., Witters, N., & Vangronsveld, J. (2016). Brownfields to green fields: Realising wider benefits from practical contaminant phytomanagement strategies. Journal of Environmental Management, 184, 67-77. https://doi.org/10.1016/j.jenvman.2016.03.028

De Noni, I., Ganzaroli, A., & Orsi, L. (2013). The evolution of OSS governance: A dimensional comparative analysis. Scandinavian Journal of Management, 29(3), 247-263. https://doi.org/10.1016/j.scaman.2012.10.003

Delgado-López-Cózar, E., Robinson-García, N., & Torres-Salinas, D. (2014). The Google scholar experiment: How to index false papers and manipulate bibliometric indicators. Journal of the Association for Information Science and Technology, 65(3), 446-454. https://doi.org/10.1002/asi.23056

Dong, C., Wang, H., Long, W., Ma, J., & Cui, Y. (2023). Can agricultural cooperatives promote chinese farmers’ adoption of green technologies?. International Journal of Environmental Research and Public Health, 20(5), 4051. https://doi.org/10.3390/ijerph20054051

Elahi, E., Khalid, Z., Tauni, M. Z., Zhang, H., & Lirong, X. (2022). Extreme weather events risk to crop-production and the adaptation of innovative management strategies to mitigate the risk: A retrospective survey of rural Punjab, Pakistan. Technovation, 117, 102255. ISH

Fadda, A., Sanna, D., Sakar, E. H., Gharby, S., Mulas, M., Medda, S., Yesilcubuk, N. S., Karaca, A. C., Gozukirmizi, C. K., Lucarini, M., Diaconeasa, Z., & Durazzo, A. (2021). Innovative and Sustainable Technologies to Enhance the Oxidative Stability of Vegetable Oils. Sustainability, 14(2), 849. https://doi.org/10.3390/su14020849

Falagas, M. E., Pitsouni, E. I., Malietzis, G. A., & Pappas, G. (2008). Comparison of PubMed, Scopus, Web of Science, and Google Scholar: strengths and weaknesses. FASEB journal: official publication of the Federation of American Societies for Experimental Biology, 22(2), 338–342. https://doi.org/10.1096/fj.07-9492LSF

Fan, W. (2024). Green education promotes the mechanism of green agricultural production by farmers in hunan region and its influencing factors. Journal of Innovation and Development, 6(1), 62-70. https://doi.org/10.54097/crz7jn39

Fiorentino, N., Ventorino, V., Rocco, C., Cenvinzo, V., Agrelli, D., Gioia, L., Di Mola, I., Adamo, P., Pepe, O., & Fagnano, M. (2016). Giant reed growth and effects on soil biological fertility in assisted phytoremediation of an industrial polluted soil. Science of The Total Environment, 575, 1375-1383. https://doi.org/10.1016/j.scitotenv.2016.09.220

for bibliometric mapping. Scientometrics, 84(2), 523–538. https://doi.org/10.1007/s11192-009-0146-3

Frare, A. B., & Beuren, I. M. (2021). The role of green process innovation translating green entrepreneurial orientation and proactive sustainability strategy into environmental performance. Journal of Small Business and Enterprise Development. https://doi.org/10.1108/jsbed-10-2021-0402

Gan, L., & Yu, J. (2008). Bioenergy transition in rural China: Policy options and co-benefits. Energy Policy, 36(2), 531-540. https://doi.org/10.1016/j.enpol.2007.10.005

Hall, J., Matos, S. & Bachor, V. From green technology development to green innovation: inducing regulatory adoption of pathogen detection technology for sustainable forestry. Small Business Economics, 52, 877–889 (2019). https://doi.org/10.1007/s11187-017-9940-0

Hall, J., Matos, S., Silvestre, B., & Martin, M. (2011). Managing technological and social uncertainties of innovation: The evolution of Brazilian energy and agriculture. Technological Forecasting and Social Change, 78(7), 1147-1157. https://doi.org/10.1016/j.techfore.2011.02.005

Hansson, A., Haikola, S., Fridahl, M. et al. Biochar as multi-purpose sustainable technology: experiences from projects in Tanzania. Environment, Development, and Sustainability, 23, 5182–5214 (2021). https://doi.org/10.1007/s10668-020-00809-8

Hart, S. L. (1997). Beyond Greening: Strategies for a Sustainable World. Harvard Business Review. https://hbr.org/1997/01/beyond-greening-strategies-for-a-sustainable-world

Harzing, AW., Alakangas, S. Google Scholar, Scopus and the Web of Science: a longitudinal and cross-disciplinary comparison. Scientometrics, 106, 787–804 (2016). https://doi.org/10.1007/s11192-015-1798-9

He, Y., Zhu, S., Zhang, Y., & Zhou, Y. (2021). Calculation, elasticity and regional differences of agricultural greenhouse gas shadow prices. Science of The Total Environment, 790, 148061. https://doi.org/10.1016/j.scitotenv.2021.148061

Ikram, M., Sroufe, R., Awan, U., & Abid, N. (2021). Enabling Progress in Developing Economies: A Novel Hybrid Decision-Making Model for Green Technology Planning. Sustainability, 14(1), 258. https://doi.org/10.3390/su14010258

Jakučionytė-Skodienė, M., Liobikienė, G. The Changes in Climate Change Concern, Responsibility Assumption and Impact on Climate-friendly Behaviour in EU from the Paris Agreement Until 2019. Environmental Management 69, 1–16 (2022). https://doi.org/10.1007/s00267-021-01574-8

Karimi, H., Mahdavi, S., Asgari Lajayer, B. et al. Insights on the bioremediation technologies for pesticide-contaminated soils. Environmental Geochemistry and Health, 44, 1329–1354 (2022). https://doi.org/10.1007/s10653-021-01081-z

Kaspersen, B. S., Christensen, T. B., Fredenslund, A. M., Møller, H. B., Butts, M. B., Jensen, N. H., & Kjaer, T. (2016). Linking climate change mitigation and coastal eutrophication management through biogas technology: Evidence from a new Danish bioenergy concept. Science of The Total Environment, 541, 1124-1131. https://doi.org/10.1016/j.scitotenv.2015.10.015

Kemp, R., Schot, J., & Hoogma, R. (1998). Regime shifts to sustainability through processes of niche formation: The approach of strategic niche management. Technology Analysis & Strategic Management, 10(2), 175–198. https://doi.org/10.1080/09537329808524310

Khan, F., & Ali, Y. (2022). Moving towards a sustainable circular bio-economy in the agriculture sector of a developing country. Ecological Economics, 196, 107402. https://doi.org/10.1016/j.ecolecon.2022.107402

Khodaverdiloo, H., Han, F. X., Hamzenejad Taghlidabad, R., Karimi, A., Moradi, N., & Kazery, J. A. (2020). Potentially toxic element contamination of arid and semi-arid soils and its phytoremediation. Arid Land Research and Management, 34(4), 361–391. https://doi.org/10.1080/15324982.2020.1746707

Kostoff, R. N., Boylan, R., & Simons, G. R. (2003). Disruptive technology roadmaps. Technological Forecasting and Social Change, 71(1-2), 141-159. https://doi.org/10.1016/S0040-1625(03)00048-9

Kothari, R., Vashishtha, A., Singh, H. M., Pathak, V. V., Tyagi, V., Yadav, B., Ashokkumar, V., & Singh, D. (2020). Assessment of Indian bioenergy policy for sustainable environment and its impact for rural India: Strategic implementation and challenges. Environmental Technology & Innovation, 20, 101078. https://doi.org/10.101B6/j.eti.2020.101078

Kuenzer, C., Renaud, F.G. (2012). Climate and Environmental Change in River Deltas Globally: Expected Impacts, Resilience, and Adaptation. In: Renaud, F., Kuenzer, C. (eds) The Mekong Delta System. Springer Environmental Science and Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3962-8_2

Laranja Ribeiro, M. P., Tommasetti, R., Gomes, M. Z., Castro, A., & Ismail, A. (2021). Adoption phases of Green Information Technology in enhanced sustainability: A bibliometric study. Cleaner Engineering and Technology, 3, 100095. https://doi.org/10.1016/j.clet.2021.100095

Le Gal, P., Merot, A., Moulin, C., Navarrete, M., & Wery, J. (2010). A modelling framework to support farmers in designing agricultural production systems. Environmental Modelling & Software, 25(2), 258-268. https://doi.org/10.1016/j.envsoft.2008.12.013

Lewis, D. J., Barham, B. L., & Robinson, B. (2011). Are there spatial spillovers in the adoption of clean technology? The case of organic dairy farming. Land Economics, 87(2), 250-267. https://doi.org/10.3368/le.87.2.250

Leydesdorff, L., Carley, S., & Rafols, I. (2013). Global maps of science based on the new Web-of-Science categories. Scientometrics, 94(2), 589–593. https://doi.org/10.1007/s11192-012-0784-8

Li, C. and Lin, Y. (2023). Research on the carbon reduction effect of digital transformation of agriculture in china. Polish Journal of Environmental Studies. https://doi.org/10.15244/pjoes/170001

Li, Q., Yang, W., & Li, K. (2018). Role of Social Learning in the Diffusion of Environmentally-Friendly Agricultural Technology in China. Sustainability, 10(5), 1527. https://doi.org/10.3390/su10051527

Li, W., Ruiz-Menjivar, J., Zhang, L., & Zhang, J. (2021). Climate change perceptions and the adoption of low-carbon agricultural technologies: Evidence from rice production systems in the Yangtze River Basin. Science of The Total Environment, 759, 143554. https://doi.org/10.1016/j.scitotenv.2020.143554

Li, X., Du, J., & Long, H. (2019). Theoretical framework and formation mechanism of the green development system model in China. Environmental Development, 32, 100465. https://doi.org/10.1016/j.envdev.2019.100465

Luo, M., Lin, H., He, Y., & Zhang, Y. (2020). The influence of corncob-based biochar on remediation of arsenic and cadmium in yellow soil and cinnamon soil. Science of The Total Environment, 717, 137014. https://doi.org/10.1016/j.scitotenv.2020.137014

Ma, L. (2024). Research on strategy optimization of green agricultural production trusteeship to promote black land protection. Land, 13(5), 647. https://doi.org/10.3390/land13050647

Mazzocchi, C., Orsi, L., Ferrazzi, G., & Corsi, S. (2020). The Dimensions of Agricultural Diversification: A Spatial Analysis of Italian Municipalities. Rural Sociology, 85(2), 316-345. https://doi.org/10.1111/ruso.12291

McNeely, J.A. Nature and COVID-19: The pandemic, the environment, and the way ahead. Ambio 50, 767–781 (2021). https://doi.org/10.1007/s13280-020-01447-0

Mignon, I., & Bankel, A. (2023). Sustainable business models and innovation strategies to realize them: A review of 87 empirical cases. Business Strategy and the Environment, 32(4), 1357-1372. https://doi.org/10.1002/bse.3192

Mishra, U., Wu, J., & Sarkar, B. (2021). Optimum sustainable inventory management with backorder and deterioration under controllable carbon emissions. Journal of Cleaner Production, 279, 123699. https://doi.org/10.1016/j.jclepro.2020.123699

Morone, P., Tartiu, V. E., & Falcone, P. (2015). Assessing the potential of biowaste for bioplastics production through social network analysis. Journal of Cleaner Production, 90, 43-54. https://doi.org/10.1016/j.jclepro.2014.11.069

Narayanan, M., & Ma, Y. (2023). Metal tolerance mechanisms in plants and microbe-mediated bioremediation. Environmental Research, 222, 115413. https://doi.org/10.1016/j.envres.2023.115413

Nguyen, P., Vũ, P., Minh, V., Tri, L., & Khuong, N. (2023). Development of criteria for high-technology rice and corn suitability assessment – a case study in the An Giang province, Vietnam. Journal of Ecological Engineering, 24(1), 239-247. https://doi.org/10.12911/22998993/156095

Nirmal, D., Kumar, A., & Singh, S. (2023). Application of fuzzy methods in green and sustainable supply chains: critical insights from a systematic review and bibliometric analysis. Benchmarking an International Journal, 31(5), 1700-1748. https://doi.org/10.1108/bij-09-2022-0563

Owsianiak, M., Cornelissen, G., Hale, S. E., Lindhjem, H., & Sparrevik, M. (2018). Influence of spatial differentiation in impact assessment for LCA-based decision support: Implementation of biochar technology in Indonesia. Journal of Cleaner Production, 200, 259-268. https://doi.org/10.1016/j.jclepro.2018.07.256

Oyetibo, G. O., Miyauchi, K., Huang, Y., Chien, M., Ilori, M. O., Amund, O. O., & Endo, G. (2017). Biotechnological remedies for the estuarine environment polluted with heavy metals and persistent organic pollutants. International Biodeterioration & Biodegradation, 119, 614-625. https://doi.org/10.1016/j.ibiod.2016.10.005

Pegels, A., & Altenburg, T. (2020). Latecomer development in a “greening” world: Introduction to the Special Issue. World Development, 135, 105084. https://doi.org/10.1016/j.worlddev.2020.105084

Qaim, M. (2020). Role of New Plant Breeding Technologies for Food Security and Sustainable Agricultural Development. Applied Economic Perspectives and Policy, 42(2), 129-150. https://doi.org/10.1002/aepp.13044

Qin, F., Li, J., Zhang, C., Zeng, G., Huang, D., Tan, X., Qin, D., & Tan, H. (2022). Biochar in the 21st century: A data-driven visualization of collaboration, frontier identification, and future trend. Science of The Total Environment, 818, 151774. https://doi.org/10.1016/j.scitotenv.2021.151774

Ramos, A., Berzosa, J., Clarens, F., Marin, M., & Rouboa, A. (2020). Environmental and socio-economic assessment of cork waste gasification: Life cycle and cost analysis. Journal of Cleaner Production, 249, 119316. https://doi.org/10.1016/j.jclepro.2019.119316

Rossa-Roccor, V., Acheson, E. S., Andrade‐Rivas, F., Coombe, M., Ogura, S., Super, L., … & Hong, A. (2020). Scoping review and bibliometric analysis of the term “planetary health” in the peer-reviewed literature. Frontiers in Public Health, 8. https://doi.org/10.3389/fpubh.2020.00343

Safruddin, S. (2024). Bibliometric analysis of the effect of sustainable agricultural practices on farmers’ economic sustainability. West Science Interdisciplinary Studies, 2(01), 208-215. https://doi.org/10.58812/wsis.v2i01.609

Schau, E. M., Ellingsen, H., Endal, A., & Aanondsen, S. A. (2009). Energy consumption in the Norwegian fisheries. Journal of Cleaner Production, 17(3), 325-334. https://doi.org/10.1016/j.jclepro.2008.08.015

Scoones, I. (1991). Wetlands in Drylands: Key Resources for Agricultural and Pastoral Production in Africa. Ambio, 20, 366-371.

Sedighi, M. (2016). Application of word co-occurrence analysis method in mapping of the scientific fields (case study: the field of Informetrics). Library Review, 65(1/2), 52-64. https://doi.org/10.1108/LR-07-2015-0075

Sommer, S. G., Olesen, J. E., Petersen, S. O., Weisbjerg, M. R., Valli, L., Rodhe, L., & Béline, F. (2009). Region-specific assessment of greenhouse gas mitigation with different manure management strategies in four agroecological zones. Global Change Biology, 15(12), 2825-2837. https://doi.org/10.1111/j.1365-2486.2009.01888.x

Srivastava, V., Srivastava, T., & Kumar, M. S. (2019). Fate of the persistent organic pollutant (POP)Hexachlorocyclohexane (HCH) and remediation challenges. International Biodeterioration & Biodegradation, 140, 43-56. https://doi.org/10.1016/j.ibiod.2019.03.004

Sun, Y. (2022). Environmental regulation, agricultural green technology innovation, and agricultural green total factor productivity. Frontiers in Environmental Science, 10. https://doi.org/10.3389/fenvs.2022.955954

Tamala, J. K., Maramag, E. I., Simeon, K. A., & Ignacio, J. J. (2022). A bibliometric analysis of sustainable oil and gas production research using VOSviewer. Cleaner Engineering and Technology, 7, 100437. https://doi.org/10.1016/j.clet.2022.100437

Van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program

Vogel, R., Güttel, W. H. (2013). The dynamic capability view in strategic management: A bibliometric review. International Journal of Management Reviews, 15(4), 426–446. https://doi.org/10.1111/ijmr.12000

Walsh, P., Murphy, E., & Horan, D. (2020). The role of science, technology and innovation in the UN 2030 agenda. Technological Forecasting and Social Change, 154, 119957. https://doi.org/10.1016/j.techfore.2020.119957

Winquist, E., Van Galen, M., Zielonka, S., Rikkonen, P., Oudendag, D., Zhou, L., & Greijdanus, A. (2020). Expert Views on the Future Development of Biogas Business Branch in Germany, The Netherlands, and Finland until 2030. Sustainability, 13(3), 1148. https://doi.org/10.3390/su13031148

Wu, Y., Wang, H., Wang, Z., Zhang, B., & Meyer, B. C. (2019). Knowledge Mapping Analysis of Rural Landscape Using CiteSpace. Sustainability, 12(1), 66. https://doi.org/10.3390/su12010066

Xu, L., Zhou, Z., & Du, J. (2020). An evolutionary game model for the multi-agent co-governance of agricultural non-point source pollution control under intensive management pattern in China. International Journal of Environmental Research and Public Health, 17(7), 2472. https://doi.org/10.3390/ijerph17072472

Xu, Y., Wu, S., Huang, F., Huang, H., Yi, Z., & Xue, S. (2022). Biomodification of feedstock for quality-improved biochar: A green method to enhance the Cd sorption capacity of Miscanthus lutarioriparius-derived biochar. Journal of Cleaner Production, 350, 131241. https://doi.org/10.1016/j.jclepro.2022.131241

Yadav, V., Sarker, A., Yadav, A., Miftah, A. O., Bilal, M., & Iqbal, H. M. (2022). Integrated biorefinery approach to valorize citrus waste: A sustainable solution for resource recovery and environmental management. Chemosphere, 293, 133459. https://doi.org/10.1016/j.chemosphere.2021.133459

Zhang, J., Cao, X., Yao, Z., Lin, Q., Yan, B., Cui, X., He, Z., Yang, X., Wang, C., & Chen, G. (2021). Phytoremediation of Cd-contaminated farmland soil via various Sedum alfredii-oilseed rape cropping systems: Efficiency comparison and cost-benefit analysis. Journal of Hazardous Materials, 419, 126489. https://doi.org/10.1016/j.jhazmat.2021.126489

Zhong, F., Wang, F., Hao, R., & Wu, L. (2022). Agricultural science and technology innovation, spatial spillover and agricultural green development—taking 30 provinces in china as the research object. Applied Sciences, 12(2), 845. https://doi.org/10.3390/app12020845

Zhu, L., Lu, L. & Zhang, D. Mitigation and remediation technologies for organic contaminated soils. Frontiers of Environmental Science & Engineering in China. 4, 373–386 (2010). https://doi.org/10.1007/s11783-010-0253-7




DOI: https://doi.org/10.24294/jipd.v8i12.9051

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Rocco Pavesi, Luigi Orsi, Luca Zanderighi

License URL: https://creativecommons.org/licenses/by/4.0/

This site is licensed under a Creative Commons Attribution 4.0 International License.