Optimization of cyber-physical urban mobility systems in developing countries: A dependency structure matrix approach with advanced artificial intelligence techniques

Dénis Awé Samalna, Verlaine Rostand Nwokam, Justin Moskolaï Ngossaha, Igor Tchappi, Ado Adamou Abba Ari, Kolyang Kolyang

Article ID: 8126
Vol 8, Issue 14, 2024

VIEWS - 75 (Abstract) 9 (PDF)

Abstract


Cyber-physical Systems (CPS) have revolutionized urban transportation worldwide, but their implementation in developing countries faces significant challenges, including infrastructure modernization, resource constraints, and varying internet accessibility. This paper proposes a methodological framework for optimizing the implementation of Cyber-Physical Urban Mobility Systems (CPUMS) tailored to improve the quality of life in developing countries. Central to this framework is the Dependency Structure Matrix (DSM) approach, augmented with advanced artificial intelligence techniques. The DSM facilitates the visualization and integration of CPUMS components, while statistical and multivariate analysis tool such as Principal Component Analysis (PCA) and artificial intelligence methods such as K-means clustering enhance complex system the analysis and optimization of complex system decisions. These techniques enable engineers and urban planners to design modular and integrated CPUMS components that are crucial for efficient, and sustainable urban mobility solutions. The interdisciplinary approach addresses local challenges and streamlines the design process, fostering economic development and technological innovation. Using DSM and advanced artificial intelligence, this research aims to optimize CPS-based urban mobility solutions, by identifying critical outliers for targeted management and system optimization.


Keywords


Cyber-Physical Systems; urban mobility; multilevel analysis; dependency structure matrix; artificial intelligence; developing countries

Full Text:

PDF


References


Agrawal, K. P., Garg, S., Sharma, S., and Patel, P. (2016). Development and validation of OPTICS based spatio-temporal clustering technique. Information Sciences, 369, 388-401. https://doi.org/10.1016/j.ins.2016.06.048.

Ahmed, M. A., Baharin, H., and Nohuddin, P. N. (2020). Analysis of K-means, DBSCAN and OPTICS Cluster algorithms on Al-Quran verses. International Journal of Advanced Computer Science and Applications, 11(8), 248-254. Doi: 10.14569/IJACSA.2020.0110832.

Aji, M., Gordon, C., Stratton, E., Calvo, R. A., Bartlett, D., Grunstein, R., and Glozier, N. (2021). Framework for the design engineering and clinical implementation and evaluation of mHealth apps for sleep disturbance: systematic review. Journal of medical Internet research, 23(2), e24607. Doi: 10.2196/24607.

Akundi, A., and Lopez, V. (2021). A review on application of model based systems engineering to manufacturing and production engineering systems. Procedia Computer Science, 185, 101-108. https://doi.org/10.1016/j.procs.2021.05.011

Alahi, M. E. E., Sukkuea, A., Tina, F. W., Nag, A., Kurdthongmee, W., Suwannarat, K., and Mukhopadhyay, S. C. (2023). Integration of IoT-enabled technologies and artificial intelligence (AI) for smart city scenario: recent advancements and future trends. Sensors, 23(11), 5206. Doi: https://doi.org/10.3390/s23115206.

Aljarah, I., Habib, M., Nujoom, R., Faris, H., and Mirjalili, S. (2021). A comprehensive review of evaluation and fitness measures for evolutionary data clustering. Evolutionary Data Clustering: Algorithms and Applications, 23-71. https://doi.org/10.1007/978-981-33-4191-3_2.

Ashari, I. F., Nugroho, E. D., Baraku, R., Yanda, I. N., and Liwardana, R. (2023). Analysis of elbow, silhouette, Davies-Bouldin, Calinski-Harabasz, and rand-index evaluation on k-means algorithm for classifying flood-affected areas in Jakarta. Journal of Applied Informatics and Computing, 7(1), 95-103. https://doi.org/10.30871/jaic.v7i1.4947.

Bagirov, A., Hoseini-Monjezi, N., and Taheri, S. (2023). A novel optimization approach towards improving separability of clusters. Computers & Operations Research, 152, 106135. https://doi.org/10.1016/j.cor.2022.106135.

Balsalobre-Lorente, D., Abbas, J., He, C., Pilař, L., and Shah, S. A. R. (2023). Tourism, urbanization and natural resources rents matter for environmental sustainability: The leading role of AI and ICT on sustainable development goals in the digital era. Resources Policy, 82, 103445. https://doi.org/10.1016/j.resourpol.2023.103445.

Bennett, K. B., Edman, C., Cravens, D., and Jackson, N. (2023). Decision support for flexible manufacturing systems: Application of the cognitive systems engineering and ecological interface design approach. Journal of Cognitive Engineering and Decision Making, 17(2), 99-119. https://doi.org/10.1177/15553434221118976.

Boutsidis, C., Mahoney, M. W., and Drineas, P. (2008, August). Unsupervised feature selection for principal components analysis. In Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 61-69).

Browning, T. R. (2015). Design structure matrix extensions and innovations: a survey and new opportunities. IEEE Transactions on engineering management, 63(1), 27-52. https://doi.org/10.1177/15553434221118976.

Buzuku, S., Kraslawski, A., and Kässi, T. (2016). A Case Study in the Application of Design Structure Matrix for Improvement of Policy Formulation in Complex Industrial Wastewater Treatment. In DSM 2016: Sustainability in modern project management-Proceedings of the 18th International DSM Conference, São Paulo, August 29th and 30th, 2016 (pp. 091-101). Doi: 10.19255/JMPM-DSM2016.

Campello, R. J. (2007). A fuzzy extension of the Rand index and other related indexes for clustering and classification assessment. Pattern Recognition Letters, 28(7), 833-841. https://doi.org/10.1016/j.patrec.2006.11.010.

Chakraborty, S., and He, T. (2020). Introduction to the special issue on transportation cyber-physical systems. ACM Transactions on Cyber-Physical Systems, 4(1), 1-3. https://doi.org/10.1145/3372495.

Conrad, C., Al-Rubaye, S., and Tsourdos, A. (2023). Intelligent embedded systems platform for vehicular cyber-physical systems. Electronics, 12(13), 2908. Doi : https://doi.org/10.3390/electronics12132908.

De Saqui-Sannes, P., Vingerhoeds, R. A., Garion, C., and Thirioux, X. (2022). A taxonomy of MBSE approaches by languages, tools and methods. IEEE Access, 10, 120936-120950. DOI: 10.1109/ACCESS.2022.3222387.

Deegalla, S., and Bostrom, H. (2006, December). Reducing high-dimensional data by principal component analysis vs. random projection for nearest neighbor classification. In 2006 5th International Conference on Machine Learning and Applications (ICMLA’06) (pp. 245-250). IEEE. Doi: 10.1109/ICMLA.2006.43

Demissie, M. G., Phithakkitnukoon, S., Sukhvibul, T., Antunes, F., Gomes, R., and Bento, C. (2016). Inferring passenger travel demand to improve urban mobility in developing countries using cell phone data: a case study of Senegal. IEEE Transactions on intelligent transportation systems, 17(9), 2466-2478. Doi: 10.1109/TITS.2016.2521830.

Farid, A. M., Viswanath, A., Al-Junaibi, R., Allan, D., and Van der Wardt, T. J. (2021). Electric vehicle integration into road transportation, intelligent transportation, and electric power systems: an Abu Dhabi case study. Smart Cities, 4(3), 1039-1057. https://doi.org/10.3390/smartcities4030055.

Fritzsch, J., Bogner, J., Haug, M., Franco da Silva, A. C., Rubner, C., Saft, M., Sauer, H. and Wagner, S. (2023). Adopting microservices and DevOps in the cyber-physical systems domain: a rapid review and case study. Software: Practice and Experience, 53(3), 790-810. https://doi.org/10.1002/spe.3169.

Garthoff, R., Okhrin, I., and Schmid, W. (2014). Statistical surveillance of the mean vector and the covariance matrix of nonlinear time series. AStA Advances in Statistical Analysis, 98, 225-255. https://doi.org/10.1007/s10182-013-0220-2.

Guan, L., Abbasi, A., and Ryan, M. J. (2021). A simulation-based risk interdependency network model for project risk assessment. Decision Support Systems, 148, 113602. https://doi.org/10.1016/j.dss.2021.113602.

Hartama, D., and Anjelita, M. (2022). Analysis of Silhouette Coefficient Evaluation with Euclidean Distance in the Clustering Method (Case Study: Number of Public Schools in Indonesia). Jurnal Mantik, 6(3), 3667-3677. https://doi.org/10.35335/mantik.v6i3.3318.

Hoffmann, P., Nomaguchi, Y., Hara, K., Sawai, K., Gasser, I., Albrecht, M., ... and von Szombathely, M. (2020). Multi-domain design structure matrix approach applied to urban system modeling. Urban science, 4(2), 28. https://doi.org/10.3390/urbansci4020028.

Hunjra, A. I., Bouri, E., Azam, M., Azam, R. I., and Dai, J. (2024). Economic growth and environmental sustainability in developing economies. Research in International Business and Finance, 70, 102341. https://doi.org/10.1016/j.ribaf.2024.102341.

Juma, M., and Shaalan, K. (2020). Cyberphysical systems in the smart city: Challenges and future trends for strategic research. In Swarm intelligence for resource management in Internet of things (pp. 65-85). Academic Press. https://doi.org/10.1016/B978-0-12-818287-1.00008-5.

Kansal, T., Bahuguna, S., Singh, V., and Choudhury, T. (2018). Customer segmentation using K-means clustering. In 2018 international conference on computational techniques, electronics and mechanical systems (CTEMS) (pp. 135-139). IEEE. Doi: 10.1109/CTEMS.2018.8769171.

Karthikeyan, B., George, D. J., Manikandan, G., and Thomas, T. (2020). A comparative study on k-means clustering and agglomerative hierarchical clustering. International Journal of Emerging Trends in Engineering Research, 8(5). https://doi.org/10.30534/ijeter/2020/20852020.

Kaur, A., and Chatterjee, J. M. (2022). Applications of Cyber-Physical Systems. Cyber-Physical Systems: Foundations and Techniques, 289-310. https://doi.org/10.1002/9781119836636.ch13.

Kherif, F., and Latypova, A. (2020). Principal component analysis. In Machine learning (pp. 209-225). Academic Press. https://doi.org/10.1016/B978-0-12-815739-8.00012-2.

Kolen, J. F., and Hutcheson, T. (2002). Reducing the time complexity of the fuzzy c-means algorithm. IEEE Transactions on Fuzzy Systems, 10(2), 263-267. Doi: 10.1109/91.995126.

Komninos, N., Kakderi, C., Mora, L., Panori, A., and Sefertzi, E. (2022). Towards high impact smart cities: A universal architecture based on connected intelligence spaces. Journal of the Knowledge Economy, 13(2), 1169-1197. Doi: https://doi.org/10.1007/s13132-021-00767-0.

Liu, H., Wang, Y., and Chen, W. (2020). Anomaly detection for condition monitoring data using auxiliary feature vector and density-based clustering. IET Generation, Transmission & Distribution, 14(1), 108-118. https://doi.org/10.1049/iet-gtd.2019.0682.

Madni, A. M., and Sievers, M. (2018). Model-based systems engineering: Motivation, current status, and research opportunities. Systems Engineering, 21(3), 172-190. https://doi.org/10.1002/sys.21438.

Mboup, G. (2019). Smart urban accessibility and mobility for smart economy in Africa. Smart Economy in Smart African Cities: Sustainable, Inclusive, Resilient and Prosperous, 251-295. https://doi.org/10.1007/978-981-13-3471-9_8.

Metaxas, T., Gallego, J. S., and Juarez, L. (2023). Sustainable urban development and the role of mega-projects: Experts’ view about Madrid Nuevo Norte Project. Journal of Infrastructure, Policy and Development, 7(2), 2161. https://doi.org/10.24294/jipd.v7i2.2161

Milligan, G. W., and Cooper, M. C. (1988). A study of standardization of variables in cluster analysis. Journal of classification, 5, 181-204. https://doi.org/10.1007/BF01897163.

Misuraca, M., Spano, M., and Balbi, S. (2019). BMS: An improved Dunn index for Document Clustering validation. Communications in statistics-theory and methods, 48(20), 5036-5049. https://doi.org/10.1080/03610926.2018.1504968.

Moran, D., Ertas, A., and Gulbulak, U. (2021). A unique transdisciplinary engineering-based integrated approach for the design of temporary refugee housing using kano, hoq/qfd, triz, ad, ism and dsm tools. Designs, 5(2), 31. https://doi.org/10.3390/designs5020031.

Murtagh, F., and Contreras, P. (2017). Algorithms for hierarchical clustering: an overview, II. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 7(6), e1219. https://doi.org/10.1002/widm.1219.

Ngossaha, J. M., Ngouna, R. H., Archimède, B., Negulescu, M. H., and Petrişor, A. I. (2024). Toward Sustainable Urban Mobility: A Multidimensional Ontology-Based Framework for Assessment and Consensus Decision-Making Using DS-AHP. Sustainability, 16(11), 4458. https://doi.org/10.3390/su16114458

Pundir, A., Singh, S., Kumar, M., Bafila, A., and Saxena, G. J. (2022). Cyber-physical systems enabled transport networks in smart cities: Challenges and enabling technologies of the new mobility era. IEEE Access, 10, 16350-16364. Doi: 10.1109/ACCESS.2022.3147323

Rao, K. R., and Josephine, B. M. (2018, October). Exploring the impact of optimal clusters on cluster purity. In 2018 3rd International Conference on Communication and Electronics Systems (ICCES) (pp. 754-757). IEEE. Doi: 10.1109/CESYS.2018.8724114.

Samalna, D. A., Moskolai, J. N., Tchappi, I., Ari, A. A. A., Kolyang and Najjar, A. (2023b). Towards an architectural framework for the design of a Cyber-Physical Urban Mobility System in Developing Countries. Procedia Computer Science, 220, 421-428. https://doi.org/10.1016/j.procs.2023.03.054.

Samalna, D. A., Ngossaha, J. M., Ari, A. A. A. and Kolyang. (2023a). Cyber-Physical Urban Mobility Systems: Opportunities and Challenges in Developing Countries. International Journal of Software Innovation (IJSI), 11(1), 1-21. DOI: 10.4018/IJSI.315662.

Savary-Leblanc, M., Le Pallec, X., and Gérard, S. (2024). Understanding the need for assistance in software modeling: interviews with experts. Software and Systems Modeling, 23(1), 103-135. https://doi.org/10.1007/s10270-023-01104-6.

Shaofan, Z. H. U., Jian, T. A. N. G., Gauthier, J. M., and Faudou, R. (2019). A formal approach using SysML for capturing functional requirements in avionics domain. Chinese Journal of Aeronautics, 32(12), 2717-2726. https://doi.org/10.1016/j.cja.2019.03.037.

Shi, C., Wei, B., Wei, S., Wang, W., Liu, H., and Liu, J. (2021). A quantitative discriminant method of elbow point for the optimal number of clusters in clustering algorithm. EURASIP journal on wireless communications and networking, 2021, 1-16. https://doi.org/10.1186/s13638-021-01910-w.

Tang, M., Kaymaz, Y., Logeman, B. L., Eichhorn, S., Liang, Z. S., Dulac, C., and Sackton, T. B. (2021). Evaluating single-cell cluster stability using the Jaccard similarity index. Bioinformatics, 37(15), 2212-2214. https://doi.org/10.1093/bioinformatics/btaa956.

Tariq, M. U. (2024). Smart Transportation Systems: Paving the Way for Sustainable Urban Mobility. In Contemporary Solutions for Sustainable Transportation Practices (pp. 254-283). IGI Global. DOI: 10.4018/979-8-3693-3755-4.ch010.

Tehreem, A., Khawaja, S. G., Khan, A. M., Akram, M. U., and Khan, S. A. (2019). Multiprocessor architecture for real-time applications using mean shift clustering. Journal of Real-Time Image Processing, 16, 2233-2246. https://doi.org/10.1007/s11554-017-0733-0.

Tukamuhabwa, B., Stevenson, M., and Busby, J. (2017). Supply chain resilience in a developing country context: a case study on the interconnectedness of threats, strategies and outcomes. Supply Chain Management: An International Journal, 22(6), 486-505. https://doi.org/10.1108/SCM-02-2017-0059.

Wang, T., Li, Q., Bucci, D. J., Liang, Y., Chen, B., and Varshney, P. K. (2019). K-medoids clustering of data sequences with composite distributions. IEEE Transactions on Signal Processing, 67(8), 2093-2106. DOI: 10.1109/TSP.2019.2901370.

Wegener, M. (1994). Operational urban models state of the art. Journal of the American planning Association, 60(1), 17-29. https://doi.org/10.1080/01944369408975547.

Weiss, S., Proudler, I. K., Coutts, F. K., and Khattak, F. A. (2023). Eigenvalue decomposition of a parahermitian matrix: Extraction of analytic eigenvectors. IEEE Transactions on Signal Processing, 71, 1642-1656. DOI:10.1109/TSP.2023.3269664.

Wilson, A. R., and Vasile, M. (2023). Life cycle engineering of space systems: Preliminary findings. Advances in Space Research, 72(7), 2917-2935. https://doi.org/10.1016/j.asr.2023.01.023.

Xu, H., Ma, C., Lian, J., Xu, K., and Chaima, E. (2018). Urban flooding risk assessment based on an integrated k-means cluster algorithm and improved entropy weight method in the region of Haikou, China. Journal of hydrology, 563, 975-986. https://doi.org/10.1016/j.jhydrol.2018.06.060.

Yang, Q., Yao, T., Lu, T., and Zhang, B. (2013). An overlapping-based design structure matrix for measuring interaction strength and clustering analysis in product development project. IEEE Transactions on Engineering Management, 61(1), 159-170. DOI: 10.1109/TEM.2013.2267779.

Yassine, A., and Braha, D. (2003). Complex concurrent engineering and the design structure matrix method. Concurrent Engineering, 11(3), 165-176. https://doi.org/10.1177/106329303034503.

Zhang, D., Zhao, J., Zhang, F., He, T., Lee, H., and Son, S. H. (2016). Heterogeneous model integration for multi-source urban infrastructure data. ACM Transactions on Cyber-Physical Systems, 1(1), 1-26. https://doi.org/10.1145/2967503.

Zhang, L. L., Zhao, Q., Wang, L., and Zhang, L. Y. (2020). Research on urban traffic signal control systems based on cyber physical systems. Journal of Advanced Transportation, 2020(1), 8894812. https://doi.org/10.1155/2020/8894812.

Zheng, P., Chen, C. H., and Shang, S. (2019). Towards an automatic engineering change management in smart product-service systems–A DSM-based learning approach. Advanced engineering informatics, 39, 203-213. https://doi.org/10.1016/j.aei.2019.01.002.




DOI: https://doi.org/10.24294/jipd8126

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Dénis Awé Samalna, Verlaine Rostand Nwokam, Justin Moskolaï Ngossaha, Igor Tchappi, Ado Adamou Abba Ari, Kolyang

License URL: https://creativecommons.org/licenses/by/4.0/

This site is licensed under a Creative Commons Attribution 4.0 International License.