References
Acharya, S. K., Quader, S. W., Ghosh, A., et al. (2020). Impact of Thermal Power Pollution on Livestock: A Multivariate Analytical Interpretation from Confronting Social Ecology. Journal of Experimental Agriculture International, 16–24. https://doi.org/10.9734/jeai/2020/v42i930583
Alsharida, R. A., Al-rimy, B. A. S., Al-Emran, M., et al. (2023). A systematic review of multi perspectives on human cybersecurity behavior. Technology in Society, 73, 102258. https://doi.org/10.1016/j.techsoc.2023.102258
Angelini, G. (2023). Big five model personality traits and job burnout: a systematic literature review. BMC Psychology, 11(1). https://doi.org/10.1186/s40359-023-01056-y
Azimi, R., Ghayekhloo, M., Ghofrani, M., et al. (2017). A novel clustering algorithm based on data transformation approaches. Expert Systems with Applications, 76, 59–70. https://doi.org/10.1016/j.eswa.2017.01.024
Bakker, A. B., & de Vries, J. D. (2020). Job Demands–Resources theory and self-regulation: new explanations and remedies for job burnout. Anxiety, Stress, & Coping, 34(1), 1–21. https://doi.org/10.1080/10615806.2020.1797695
Benmounah, Z., Meshoul, S., & Batouche, M. (2017). Scalable Differential Evolutionary Clustering Algorithm for Big Data Using Map-Reduce Paradigm. International Journal of Applied Metaheuristic Computing, 8(1), 45–60. https://doi.org/10.4018/ijamc.2017010103
Carman, L., Besier, T. F., & Choisne, J. (2022). Predicting the hip joint center in children: New regression equations, linear scaling, and statistical shape modelling. Journal of Biomechanics, 142, 111265. https://doi.org/10.1016/j.jbiomech.2022.111265
Cheng, D., Zhu, Q., Huang, J., et al. (2017). Natural neighbor-based clustering algorithm with local representatives. Knowledge-Based Systems, 123, 238–253. https://doi.org/10.1016/j.knosys.2017.02.027
Davahli, M. R., Karwowski, W., & Taiar, R. (2020). A System Dynamics Simulation Applied to Healthcare: A Systematic Review. International Journal of Environmental Research and Public Health, 17(16), 5741. https://doi.org/10.3390/ijerph17165741
Derakhshanrad, S. A., Piven, E., & Zeynalzadeh Ghoochani, B. (2019). The Relationships between Problem-Solving, Creativity, and Job Burnout in Iranian Occupational Therapists. Occupational Therapy In Health Care, 33(4), 365–380. https://doi.org/10.1080/07380577.2019.1639098
Doley, C., Das, U. K., & Shukla, S. K. (2022). Development of a multiple regression equation for prediction of bearing capacity of geocell-reinforced sand beds based on experimental study. Arabian Journal of Geosciences, 15(16). https://doi.org/10.1007/s12517-022-10652-y
El Hajj, D., & Cook, P. F. (2018). Acculturation and Arab immigrant health in Colorado: a socio-ecological perspective. Nutrition & Food Science, 48(5), 795–806. https://doi.org/10.1108/nfs-10-2017-0207
Gao, J., Alotaibi, F. S., & Ismail, R. Ibrahim. (2021). The Model of Sugar Metabolism and Exercise Energy Expenditure Based on Fractional Linear Regression Equation. Applied Mathematics and Nonlinear Sciences, 7(1), 123–132. https://doi.org/10.2478/amns.2021.2.00026
Ghaniyoun. A., Shakeri, K., Heidari, M. (2017). The Association of Psychological Empowerment and Job Burnout in Operational Staff of Tehran Emergency Center. Indian Journal of Critical Care Medicine: Peer-reviewed, Official Publication of Indian Society of Critical Care Medicine, 21(9), 563–567. https://doi.org/10.4103/ijccm.IJCCM_56_17
Guravaiah, K., & Leela Velusamy, R. (2017). Energy Efficient Clustering Algorithm Using RFD Based Multi-hop Communication in Wireless Sensor Networks. Wireless Personal Communications, 95(4), 3557–3584. https://doi.org/10.1007/s11277-017-4012-y
Han, X., Quan, L., Xiong, X., et al. (2017). A novel data clustering algorithm based on modified gravitational search algorithm. Engineering Applications of Artificial Intelligence, 61, 1–7. https://doi.org/10.1016/j.engappai.2016.11.003
Kim, S., & Park, C. (2017). Street-level bureaucrats’ job burnout and engagement—Focusing on role of job demands-resources model and CSS (customer-related social stressors). Korean Public Administration Review, 51(2), 61–95. https://doi.org/10.18333/kpar.51.2.61
Li, X., Han, Q., & Qiu, B. (2018). A clustering algorithm using skewness-based boundary detection. Neurocomputing, 275, 618–626. https://doi.org/10.1016/j.neucom.2017.09.023
Lubbadeh, T. (2020). Job Burnout: A General Literature Review. International Review of Management and Marketing, 10(3), 7–15. https://doi.org/10.32479/irmm.9398
Memon, K. H., & Lee, D. (2017). Generalized fuzzy c-means clustering algorithm with local information. IET Image Processing, 11(1), 1–12. Portico. https://doi.org/10.1049/iet-ipr.2016.0282
Mijwil, M., Unogwu, O. J., Filali, Y., et al. (2023). Exploring the Top Five Evolving Threats in Cybersecurity: An In-Depth Overview. Mesopotamian Journal of Cyber Security, 57–63. https://doi.org/10.58496/mjcs/2023/010
Saeed, M. (2017). Novel linkage disequilibrium clustering algorithm identifies new lupus genes on meta-analysis of GWAS datasets. Immunogenetics, 69(5), 295–302. https://doi.org/10.1007/s00251-017-0976-8
Scitovski, S. (2018). A density-based clustering algorithm for earthquake zoning. Computers & Geosciences, 110, 90–95. https://doi.org/10.1016/j.cageo.2017.08.014
Shi, B., Han, L., & Yan, H. (2018). Adaptive clustering algorithm based on k NN and density. Pattern Recognition Letters, 104, 37–44. https://doi.org/10.1016/j.patrec.2018.01.020
Wu, F., Ren, Z., Wang, Q., et al. (2020). The relationship between job stress and job burnout: the mediating effects of perceived social support and job satisfaction. Psychology, Health & Medicine, 26(2), 204–211. https://doi.org/10.1080/13548506.2020.1778750
Yang, L.-F., Liu, J.-Y., & Liu, Y.-H. (2018). Job burnout and turnover intention among nurses in China: the mediating effects of positive emotion. Frontiers of Nursing, 5(1), 43–47. https://doi.org/10.1515/fon-2018-0007
Yang, F., Li, X., Zhu, Y., et al. (2017). Job burnout of construction project managers in China: A cross-sectional analysis. International Journal of Project Management, 35(7), 1272–1287. https://doi.org/10.1016/j.ijproman.2017.06.005
Zimmermann, V., & Renaud, K. (2021). The Nudge Puzzle: Matching nudge interventions to cybersecurity decisions. ACM Transactions on Computer-Human Interaction, 28(1), 1–45. https://doi.org/10.1145/3429888
Zhong, W., Tan, D., Peng, X., et al. (2018). Fuzzy high-order hybrid clustering algorithm for swarm intelligence sets. Neurocomputing, 314, 347–359. https://doi.org/10.1016/j.neucom.2018.03.019
Zhu, S., & Xu, L. (2018). Many-objective fuzzy centroids clustering algorithm for categorical data. Expert Systems with Applications, 96, 230–248. https://doi.org/10.1016/j.eswa.2017.12.013