References
Acock, A. C., & Stavig, G. R. (1979). A Measure of Association for Nonparametric Statistics. Social Forces, 57(4), 1381. https://doi.org/10.2307/2577276
Mujali Al-Rawahna, A. S., Chen, S.-C., & Hung, C.-W. (2018). The Barriers of E-Government Success : An Empirical Study from Jordan. International Journal of Managing Public Sector Information and Communication Technologies, 9(2), 01–18. https://doi.org/10.5121/ijmpict.2018.9201
Al-Shafi, S., Weerakkody, V., Janssen, M. (2009). Investigating the adoption of eGovernment services in Qatar using the UTAUT model. AMCIS 2009 Proceedings, 260.
Bednar, P. M., & Welch, C. (2019). Socio-Technical Perspectives on Smart Working: Creating Meaningful and Sustainable Systems. Information Systems Frontiers, 22(2), 281–298. https://doi.org/10.1007/s10796-019-09921-1
Bijker, W., Hughes, T., & Pinch, T. (editors). (1987). The Social Construction of Technological Systems. Cambridge, MA: MIT Press.
Breiman, L. (2001). Random forests. Machine learning, 45, 5-32. https://doi.org/10.1023/A:1010933404324
Chan, F., Thong, J., Venkatesh, V., et al. (2010). Modeling Citizen Satisfaction with Mandatory Adoption of an E-Government Technology. Journal of the Association for Information Systems, 11(10), 519–549. https://doi.org/10.17705/1jais.00239
Choi, J. (2016). Why do people use news differently on SNSs? An investigation of the role of motivations, media repertoires, and technology cluster on citizens’ news-related activities. Computers in Human Behavior, 54, 249–256. https://doi.org/10.1016/j.chb.2015.08.006
Clark, B., Chatterjee, K., Martin, A., et al. (2019). How commuting affects subjective wellbeing. Transportation, 47(6), 2777–2805. https://doi.org/10.1007/s11116-019-09983-9
Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319. https://doi.org/10.2307/249008
Dwivedi, Y. K., Rana, N. P., Janssen, M., et al. (2017). An empirical validation of a unified model of electronic government adoption (UMEGA). Government Information Quarterly, 34(2), 211–230. https://doi.org/10.1016/j.giq.2017.03.001
Elle, M., Dammann, S., Lentsch, J., et al. (2010). Learning from the social construction of environmental indicators: From the retrospective to the pro-active use of SCOT in technology development. Building and Environment, 45(1), 135–142. https://doi.org/10.1016/j.buildenv.2009.05.011
Ettema, D., Friman, M., Gärling, T., et al. (2012). How in-vehicle activities affect work commuters’ satisfaction with public transport. Journal of Transport Geography, 24, 215–222. https://doi.org/10.1016/j.jtrangeo.2012.02.007
European Commission. (2022). Digital Economy and Society Index (DESI) 2022. Hungary. European Commission.
Fási, Cs. (2019). Competitiveness Studies – The Digital Preparedness of the Hungarian Public Service. JURA, 2, 264-274.
Government of Hungary. (2021). Hungary. National Reform Programme of Hungary. Available online: https://commission.europa.eu/system/files/2021-11/nrp_2021_hungary_en.pdf (accessed on 1 June 2024).
Jang, J., & Ko, J. (2019). Factors associated with commuter satisfaction across travel time ranges. Transportation Research Part F: Traffic Psychology and Behaviour, 66, 393–405. https://doi.org/10.1016/j.trf.2019.09.019
Julsrud, T. E., & Denstadli, J. M. (2017). Smartphones, travel time-use, and attitudes to public transport services. Insights from an explorative study of urban dwellers in two Norwegian cities. International Journal of Sustainable Transportation, 11(8), 602–610. https://doi.org/10.1080/15568318.2017.1292373
Kaiser, T., & Gadár, L. (2023). Survey data on the attitudes towards digital technologies and the way of managing e-governmental tasks. Data in Brief, 46, 108871. https://doi.org/10.1016/j.dib.2022.108871
Ma, L., & Ye, R. (2019). Does daily commuting behavior matter to employee productivity? Journal of Transport Geography, 76, 130–141. https://doi.org/10.1016/j.jtrangeo.2019.03.008
Malokin, A., Circella, G., & Mokhtarian, P. L. (2019). How do activities conducted while commuting influence mode choice? Using revealed preference models to inform public transportation advantage and autonomous vehicle scenarios. Transportation Research Part A: Policy and Practice, 124, 82–114. https://doi.org/10.1016/j.tra.2018.12.015
Mensah, I. K. (2020). Impact of Government Capacity and E-Government Performance on the Adoption of E-Government Services. International Journal of Public Administration, 43(4), 303–311. https://doi.org/10.1080/01900692.2019.1628059
Mensah, I. K., Zeng, G., & Luo, C. (2020). E-Government Services Adoption: An Extension of the Unified Model of Electronic Government Adoption. SAGE Open, 10(2), 215824402093359. https://doi.org/10.1177/2158244020933593
Ministry of Innovation, Technology and Ministry of Interior. (2020). National Digitalization Strategy 2021-230 (Hungarian). Available online: https://digital-strategy.ec.europa.eu/en/policies/broadband-hungary (accessed on 1 June 2024).
Ministry of Interior. (2020). Statistics. Population Data Portal. Available online: https://nyilvantarto.hu/hu/statisztikak?stat=kozerdeku (accessed on 2 June 2024).
Pieterson, W. J., & Ebbers, W. E. (2020). Channel choice evolution: An empirical analysis of shifting channel behavior across demographics and tasks. Government Information Quarterly, 37(3), 101478. https://doi.org/10.1016/j.giq.2020.101478
Rogers, E. M. (2010). Diffusion of innovations, 4th ed. The Free Press.
Rosenbaum, J., Zepic, R., Schreieck, M., et al. (2018). Barriers to mobile government adoption: An exploratory case study of an information platform for refugees in Germany. Academic Conferences and Publishing International Limited.
Singleton, P. A. (2018). How Useful is Travel-Based Multitasking? Evidence from Commuters in Portland, Oregon. Transportation Research Record: Journal of the Transportation Research Board, 2672(50), 11–22. https://doi.org/10.1177/0361198118776151
Song, J. W., & Chung, K. C. (2010). Observational Studies: Cohort and Case-Control Studies. Plastic and Reconstructive Surgery, 126(6), 2234–2242. https://doi.org/10.1097/prs.0b013e3181f44abc
St-Louis, E., Manaugh, K., van Lierop, D., et al. (2014). The happy commuter: A comparison of commuter satisfaction across modes. Transportation Research Part F: Traffic Psychology and Behaviour, 26, 160–170. https://doi.org/10.1016/j.trf.2014.07.004
Taylor, S., & Todd, P. A. (1995). Understanding Information Technology Usage: A Test of Competing Models. Information Systems Research, 6(2), 144–176. https://doi.org/10.1287/isre.6.2.144
Van den Ban, A. W., Hawkins, S. S. (1988). Agricultural Extension, 2nd ed. Cambridge, Massachusetts: Blackwell Science Ltd.
Vargáné Dudás, P., & Dávid, L. D. (2024). Unlocking the potential: UTAUT2 framework for embracing self-driving tractors in modern agriculture. Journal of Infrastructure, Policy and Development, 8(6), 3442. https://doi.org/10.24294/jipd.v8i6.3442
Venkatesh, Morris, Davis, & Davis. (2003). User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 27(3), 425. https://doi.org/10.2307/30036540
Venkatesh, V., Thong, J., & Xu, X. (2016). Unified Theory of Acceptance and Use of Technology: A Synthesis and the Road Ahead. Journal of the Association for Information Systems, 17(5), 328–376. https://doi.org/10.17705/1jais.00428
World Population Review. (2024): Budapest population 2024. Available online: https://worldpopulationreview.com/world-cities/budapest-population (accessed on 1 June 2024).
Ye, R., & Titheridge, H. (2017). Satisfaction with the commute: The role of travel mode choice, built environment and attitudes. Transportation Research Part D: Transport and Environment, 52, 535–547. https://doi.org/10.1016/j.trd.2016.06.011