References
Abrahim Sleiman, K. A., Juanli, L., Lei, H. Z., et al. (2023). Factors that impacted mobile-payment adoption in China during the COVID-19 pandemic. Heliyon, 9(5), e16197. https://doi.org/10.1016/j.heliyon.2023.e16197
Albashrawi, M., & Motiwalla, L. (2017). Privacy and Personalization in Continued Usage Intention of Mobile Banking: An Integrative Perspective. Information Systems Frontiers, 21(5), 1031–1043. https://doi.org/10.1007/s10796-017-9814-7
Aloulou, M., Grati, R., Al-Qudah, A. A., et al. (2023). Does FinTech adoption increase the diffusion rate of digital financial inclusion? A study of the banking industry sector. Journal of Financial Reporting and Accounting, 22(2), 289–307. https://doi.org/10.1108/jfra-05-2023-0224
Al-Okaily, M. (2023). The influence of e-satisfaction on users’ e-loyalty toward e-wallet payment apps: a mediated-moderated model. International Journal of Emerging Markets. https://doi.org/10.1108/ijoem-08-2022-1313
Al-Okaily, M., Alqudah, H., Al-Qudah, A. A., et al. (2022). Does financial awareness increase the acceptance rate for financial inclusion? An empirical examination in the era of digital transformation. Kybernetes, 52(11), 4876–4896. https://doi.org/10.1108/k-08-2021-0710
Alsmadi, A. A., Shuhaiber, A., Alhawamdeh, L. N., et al. (2022). Twenty Years of Mobile Banking Services Development and Sustainability: A Bibliometric Analysis Overview (2000–2020). Sustainability, 14(17), 10630. https://doi.org/10.3390/su141710630
Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis. Management Science, 30(9), 1078–1092. https://doi.org/10.1287/mnsc.30.9.1078
Bardhan, S. (2013). Profit Efficiency of Indian Commercial Banks in the Post-liberalisation Period: A Stochastic Frontier Approach. Margin: The Journal of Applied Economic Research, 7(4), 391–415. https://doi.org/10.1177/0973801013500132
Bianchi, M., Bouvard, M., Gomes, R., et al. (2023). Mobile payments and interoperability: Insights from the academic literature. Information Economics and Policy, 65, 101068. https://doi.org/10.1016/j.infoecopol.2023.101068
Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the Efficiency of Decision Making Units. European Journal of Operational Research, 2(6), 429-444. https://doi.org/10.1016/0377-2217(78)90138-8
Chen, Y., Liang, L., Yang, F., et al. (2006). Evaluation of information technology investment: a data envelopment analysis approach. Computers & Operations Research, 33(5), 1368–1379. https://doi.org/10.1016/j.cor.2004.09.021
Chen, Y., & Zhu, J. (2004). Measuring Information Technology’s Indirect Impact on Firm Performance. Information Technology and Management Journal, 5(1-2), 9-22. https://doi.org/10.1023/B:ITEM.0000008075.43543.97
Chen, Y., Cook, W. D., Li, N., et al. (2009). Additive efficiency decomposition in two-stage DEA. European Journal of Operational Research, 196(3), 1170–1176. https://doi.org/10.1016/j.ejor.2008.05.011
Cook, W. D., Liang, L., & Zhu, J. (2010). Measuring performance of two-stage network structures by DEA: A review and future perspective. Omega, 38(6), 423–430. https://doi.org/10.1016/j.omega.2009.12.001
De Reuver, M., Verschuur, E., Nikayin, F., et al. (2015). Collective action for mobile payment platforms: A case study on collaboration issues between banks and telecom operators. Electronic Commerce Research and Applications, 14(5), 331–344. https://doi.org/10.1016/j.elerap.2014.08.004
Färe, R., Grosskopf, S. (1996). Productivity and Intermediate Products: A Frontier Approach. Economics Letters, 50(1), 65-70. https://doi.org/10.1016/0165-1765(95)00729-6
Fu, H.-P., Chang, T.-S., Wang, C.-N., et al. (2022). Critical factors affecting the introduction of mobile payment tools by microretailers. Technological Forecasting and Social Change, 175, 121319. https://doi.org/10.1016/j.techfore.2021.121319
Hasan, R., Ashfaq, M., & Shao, L. (2021). Evaluating Drivers of Fintech Adoption in the Netherlands. Global Business Review, 097215092110274. https://doi.org/10.1177/09721509211027402
Hedman, J., & Henningsson, S. (2015). The new normal: Market cooperation in the mobile payments ecosystem. Electronic Commerce Research and Applications, 14(5), 305–318. https://doi.org/10.1016/j.elerap.2015.03.005
Jung, J.-H., Kwon, E., & Kim, D. H. (2020). Mobile payment service usage: U.S. consumers’ motivations and intentions. Computers in Human Behavior Reports, 1, 100008. https://doi.org/10.1016/j.chbr.2020.100008
Khan, I., Rahman, Z., & Fatma, M. (2016). The role of customer brand engagement and brand experience in online banking. International Journal of Bank Marketing, 34(7), 1025–1041. https://doi.org/10.1108/ijbm-07-2015-0110
Kao, C., & Hwang, S.-N. (2008). Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan. European Journal of Operational Research, 185(1), 418–429. https://doi.org/10.1016/j.ejor.2006.11.041
Koenig-Lewis, N., Marquet, M., Palmer, A., et al. (2015). Enjoyment and social influence: predicting mobile payment adoption. The Service Industries Journal, 35(10), 537–554. https://doi.org/10.1080/02642069.2015.1043278
Kumbhakar, S. C., & Wang, D. (2007). Economic reforms, efficiency and productivity in Chinese banking. Journal of Regulatory Economics, 32(2), 105–129. https://doi.org/10.1007/s11149-007-9028-x
Le, T. DQ., & Ngo, T. (2020). The determinants of bank profitability: A cross-country analysis. Central Bank Review, 20(2), 65–73. https://doi.org/10.1016/j.cbrev.2020.04.001
Le, T. D. Q., Ngo, T., Ho, T. H., et al. (2022). ICT as a Key Determinant of Efficiency: A Bootstrap-Censored Quantile Regression (BCQR) Analysis for Vietnamese Banks. International Journal of Financial Studies, 10(2), 44. https://doi.org/10.3390/ijfs10020044
Lee, K. C., & Chung, N. (2009). Understanding factors affecting trust in and satisfaction with mobile banking in Korea: A modified DeLone and McLean’s model perspective. Interacting with Computers, 21(5–6), 385–392. https://doi.org/10.1016/j.intcom.2009.06.004
Lian, J.-W., & Li, J. (2021). The dimensions of trust: An investigation of mobile payment services in Taiwan. Technology in Society, 67, 101753. https://doi.org/10.1016/j.techsoc.2021.101753
Liang, L., Cook, W. D., & Zhu, J. (2008). DEA models for two‐stage processes: Game approach and efficiency decomposition. Naval Research Logistics (NRL), 55(7), 643–653. https://doi.org/10.1002/nav.20308
López-Penabad, M. C., Iglesias-Casal, A., Neto, J. F. S., et al. (2022). Does corporate social performance improve bank efficiency? Evidence from European banks. Review of Managerial Science, 17(4), 1399–1437. https://doi.org/10.1007/s11846-022-00579-9
Luo, X. (2003). Evaluating the Profitability and Marketability Efficiency of Large Banks: An Application of Data Envelopment Analysis. Journal of Business Research, 56(8), 627-635. https://doi.org/10.1016/S0148-2963(01)00293-4
Musa, A., Khan, H. U., & AlShare, K. A. (2015). Factors influence consumers’ adoption of mobile payment devices in Qatar. International Journal of Mobile Communications, 13(6), 670. https://doi.org/10.1504/ijmc.2015.072100
Niankara, I., & Traoret, R. I. (2023). The digital payment-financial inclusion nexus and payment system innovation within the global open economy during the COVID-19 pandemic. Journal of Open Innovation: Technology, Market, and Complexity, 9(4), 100173. https://doi.org/10.1016/j.joitmc.2023.100173
Rahman, M., Ismail, I., Bahri, S., et al. (2022). An Empirical Analysis of Cashless Payment Systems for Business Transactions. Journal of Open Innovation: Technology, Market, and Complexity, 8(4), 213. https://doi.org/10.3390/joitmc8040213
Ruggiero, J. (1998). Non-discretionary Inputs in Data Envelopment Analysis. European Journal of Operational Research, 111(3), 461-469. https://doi.org/10.1016/S0377-2217(97)00306-8
Seiford, L. M., & Zhu, J. (1999). Profitability and Marketability of the Top 55 U.S. Commercial Banks. Management Science, 45(9), 1270–1288. https://doi.org/10.1287/mnsc.45.9.1270
Sexton, T. R., & Lewis, H. F. (2003). Two-stage DEA: An Application to Major League Baseball. Journal of Productivity Analysis, 19(2), 227-249. https://doi.org/10.1023/A:1022861618317
Shang, S. S. C., & Chiu, L. S. L. (2023). A RACE pathway for inventing and sustaining mobile payment innovation - A case study of a leading Bank in Taiwan. Asia Pacific Management Review, 28(4), 401–409. https://doi.org/10.1016/j.apmrv.2022.12.007
Shareef, M. A., Baabdullah, A., Dutta, S., et al. (2018). Consumer adoption of mobile banking services: An empirical examination of factors according to adoption stages. Journal of Retailing and Consumer Services, 43, 54–67. https://doi.org/10.1016/j.jretconser.2018.03.003
Slade, E. L., Dwivedi, Y. K., Piercy, N. C., et al. (2015). Modeling Consumers’ Adoption Intentions of Remote Mobile Payments in the United Kingdom: Extending UTAUT with Innovativeness, Risk, and Trust. Psychology & Marketing, 32(8), 860–873. https://doi.org/10.1002/mar.20823
Stoica, O., Mehdian, S., Sargu, A. (2015). The Impact of Internet Banking on the Performance of Romanian Banks: DEA and PCA Approach. Procedia Economics and Finance, 20, 610-622. https://doi.org/10.1016/S2212-5671(15)00115-X
Tan, G. W.-H., Ooi, K.-B., Chong, S.-C., et al. (2014). NFC mobile credit card: The next frontier of mobile payment? Telematics and Informatics, 31(2), 292–307. https://doi.org/10.1016/j.tele.2013.06.002
Teo, A. C., Tan, G. W. H., Ooi, K. B., et al. (2015). Why consumers adopt mobile payment? A partial least squares structural equation modelling (PLS-SEM) approach. International Journal of Mobile Communications, 13(5), 478. https://doi.org/10.1504/ijmc.2015.070961
Tone, K., & Tsutsui, M. (2009). Network DEA: A slacks-based measure approach. European Journal of Operational Research, 197(1), 243–252. https://doi.org/10.1016/j.ejor.2008.05.027
Tong, B.-N., Cheng, C.-P., Liang, L.-W., et al. (2023). Using Network DEA to Explore the Effect of Mobile Payment on Taiwanese Bank Efficiency. Sustainability, 15(8), 6344. https://doi.org/10.3390/su15086344
Zhou, Q., Lim, F. J., Yu, H., et al. (2021). A study on factors affecting service quality and loyalty intention in mobile banking. Journal of Retailing and Consumer Services, 60, 102424. https://doi.org/10.1016/j.jretconser.2020.102424
Zhu, J. (2000). Multi-factor Performance Measure Model with an Application to Fortune 500 Companies. European Journal of Operational Research, 123, 105-124. https://doi.org/10.1016/S0377-2217(99)00096-X
Copyright (c) 2024 Manh-Trung Phung, Chen-Yu Kao, Cheng-Ping Cheng, Yi-Jyun Liu, Lien-Wen Liang