Two decades of nuclear energy policy and its impact on Indonesia: A bibliometric review
Vol 8, Issue 7, 2024
Abstract
Although much bibliometric research has been conducted to analyze publications on energy policy, a systematic investigation of the sustainability of nuclear energy use after the Fukushima nuclear accident is still lacking. Therefore, this study conducted a comprehensive bibliometric review of the sustainability of nuclear energy policy (NEP). This study discusses NEPs, highlighting their disadvantages; emerging research themes; and networks of the most productive authors, countries, journals, and institutions over the last 20 years (2002–2022). This timeframe was selected because of the Fukushima nuclear accident, which has been one of the largest environmental disasters in recent years. Bibliometric analysis was carried out by reviewing 1146 documents from the Scopus database using the keywords “energy policy” and “nuclear energy.” The OpenRefine software was used to deep-clean keywords with the same meaning, and VOSviewer was used to visualize them. The results show that over the past two decades, future research themes and trends in the study of NEP have focused on nuclear fuel, the Fukushima nuclear accident, risk perception, energy transition, and renewable energy. Bibliometric analysis has positively affected the development of NEP in countries that do not yet have nuclear power plants, such as Indonesia.
Keywords
Full Text:
PDFReferences
Abdullah, A. G., Shafii, M. A., Pramuditya, S., et al. (2023). Multi-criteria decision making for nuclear power plant selection using fuzzy AHP: Evidence from Indonesia. Energy and AI, 14, 100263. https://doi.org/10.1016/j.egyai.2023.100263
Aghaei Chadegani, A., Salehi, H., Yunus, M. M., et al. (2013). A Comparison between Two Main Academic Literature Collections: Web of Science and Scopus Databases. Asian Social Science, 9(5). https://doi.org/10.5539/ass.v9n5p18
Ahl, A., Yarime, M., Goto, M., et al. (2020). Exploring blockchain for the energy transition: Opportunities and challenges based on a case study in Japan. Renewable and Sustainable Energy Reviews, 117, 109488. https://doi.org/10.1016/j.rser.2019.109488
Alam, S. D. (2022). Organizational structure (Indonesian). Direktorat kebijakan lingkungan hidup, kemaritiman, sumber daya alam, dan ketenaganukliran, 10340.
Andoni, M., Robu, V., Flynn, D., et al. (2019). Blockchain technology in the energy sector: A systematic review of challenges and opportunities. Renewable and Sustainable Energy Reviews, 100, 143–174. https://doi.org/10.1016/j.rser.2018.10.014
Aoyagi, M. (2021). The impact of the Fukushima accident on nuclear power policy in Japan. Nature Energy, 6(4), 326–328. https://doi.org/10.1038/s41560-021-00818-5
Banerjee, A., & Schuitema, G. (2022). How just are just transition plans? Perceptions of decarbonisation and low-carbon energy transitions among peat workers in Ireland. Energy Research & Social Science, 88, 102616. https://doi.org/10.1016/j.erss.2022.102616
Belmonte, Z. J. A., Prasetyo, Y. T., Benito, O. P., et al. (2023). The acceptance of nuclear energy as an alternative source of energy among Generation Z in the Philippines: An extended theory of planned behavior approach. Nuclear Engineering and Technology, 55(8), 3054–3070. https://doi.org/10.1016/j.net.2023.04.047
Bian, Q., Han, Z., Veuthey, J., et al. (2021). Risk perceptions of nuclear energy, climate change, and earthquake: How are they correlated and differentiated by ideologies? Climate Risk Management, 32, 100297. https://doi.org/10.1016/j.crm.2021.100297
Boulton, F. (2018). Learning from Fukushima—nuclear power in East Asia. Medicine, Conflict and Survival, 34(1), 48–51. https://doi.org/10.1080/13623699.2018.1435496
Camarinha-Matos, L. M. (2016). Collaborative smart grids – A survey on trends. Renewable and Sustainable Energy Reviews, 65, 283–294. https://doi.org/10.1016/j.rser.2016.06.093
Can Şener, Ş. E., Sharp, J. L., & Anctil, A. (2018). Factors impacting diverging paths of renewable energy: A review. Renewable and Sustainable Energy Reviews, 81, 2335–2342. https://doi.org/10.1016/j.rser.2017.06.042
Corner, A., Venables, D., Spence, A., et al. (2011). Nuclear power, climate change and energy security: Exploring British public attitudes. Energy Policy, 39(9), 4823–4833. https://doi.org/10.1016/j.enpol.2011.06.037
Duffield, J. S. (2016). Japanese Energy Policy after Fukushima Daiichi: Nuclear Ambivalence. Political Science Quarterly, 131(1), 133–162. https://doi.org/10.1002/polq.12431
Erdoğan, M., & Kaya, İ. (2016). A combined fuzzy approach to determine the best region for a nuclear power plant in Turkey. Applied Soft Computing, 39, 84–93. https://doi.org/10.1016/j.asoc.2015.11.013
Gallo, A. B., Simões-Moreira, J. R., Costa, H. K. M., et al. (2016). Energy storage in the energy transition context: A technology review. Renewable and Sustainable Energy Reviews, 65, 800–822. https://doi.org/10.1016/j.rser.2016.07.028
Garvey, A., Norman, J. B., Büchs, M., et al. (2022). A “spatially just” transition? A critical review of regional equity in decarbonisation pathways. Energy Research & Social Science, 88, 102630. https://doi.org/10.1016/j.erss.2022.102630
Hansen, P., Liu, X., & Morrison, G. M. (2019). Agent-based modelling and socio-technical energy transitions: A systematic literature review. Energy Research & Social Science, 49, 41–52. https://doi.org/10.1016/j.erss.2018.10.021
Harjanne, A., & Korhonen, J. M. (2019). Abandoning the concept of renewable energy. Energy Policy, 127, 330–340. https://doi.org/10.1016/j.enpol.2018.12.029
Hayashi, M., & Hughes, L. (2013). The Fukushima nuclear accident and its effect on global energy security. Energy Policy, 59, 102–111. https://doi.org/10.1016/j.enpol.2012.11.046
Hedberg, P., & Holmberg, S. (2008). Swedish Nuclear Power Policy. A Compilation of Public Record Material. April.
Heffron, R. J. (2013). Nuclear energy policy in the United States 1990–2010: A federal or state responsibility? Energy Policy, 62, 254–266. https://doi.org/10.1016/j.enpol.2013.07.005
Ho, S. S., Looi, J., Chuah, A. S. F., et al. (2018). “I can live with nuclear energy if…”: Exploring public perceptions of nuclear energy in Singapore. Energy Policy, 120, 436–447. https://doi.org/10.1016/j.enpol.2018.05.060
Ho, S. S., Yu, P., Tandoc, E. C., et al. (2022). Mapping risk and benefit perceptions of energy sources: Comparing public and expert mental models in Indonesia, Malaysia, and Singapore. Energy Research & Social Science, 88, 102500. https://doi.org/10.1016/j.erss.2022.102500
Holt, M. (2014). Nuclear Energy Policy Mark Holt Specialist in Energy Policy. Congressional Research Service. www.crs.govRL33558
Hu, X., Zhu, W., & Wei, J. (2021). Effects of information strategies on public acceptance of nuclear energy. Energy, 231, 120907. https://doi.org/10.1016/j.energy.2021.120907
Huang, L., He, R., Yang, Q., et al. (2018). The changing risk perception towards nuclear power in China after the Fukushima nuclear accident in Japan. Energy Policy, 120, 294–301. https://doi.org/10.1016/j.enpol.2018.05.007
Humphrey, U. E., & Khandaker, M. U. (2018). Viability of thorium-based nuclear fuel cycle for the next generation nuclear reactor: Issues and prospects. Renewable and Sustainable Energy Reviews, 97, 259–275. https://doi.org/10.1016/j.rser.2018.08.019
IEA. (2022). An Energy Sector Roadmap to Net Zero Emissions in Indonesia. International Energy Agency. https://doi.org/10.1787/4a9e9439-en
International Atomic Energy Agency. (2009). Management and Storage of Research Reactor Spent Nuclear Fuel. In: Proceedings of a Technical Meeting; 19–22 October; Thurso, United Kingdom.
IRENA. (2018). Global Energy Transformation: A roadmap to 2050. IRENA.
Iwai, N., & Shishido, K. (2013). The Impact of the Great East Japan Earthquake and Fukushima Daiichi Nuclear Accident on People’s Perception of Disaster Risks and Attitudes Toward Nuclear Energy Policy. Japanese Sociological Review, 64(3), 420–438. https://doi.org/10.4057/jsr.64.420
Jia, Z., & Lin, B. (2021). How to achieve the first step of the carbon-neutrality 2060 target in China: The coal substitution perspective. Energy, 233, 121179. https://doi.org/10.1016/j.energy.2021.121179
Kern, F., & Smith, A. (2008). Restructuring energy systems for sustainability? Energy transition policy in the Netherlands. Energy Policy, 36(11), 4093–4103. https://doi.org/10.1016/j.enpol.2008.06.018
Kikuchi, M. (2020). Changing dynamics of the nuclear energy policy‐making process in Japan. Environmental Policy and Governance, 31(2), 116–124. Portico. https://doi.org/10.1002/eet.1922
Kim, H. (2018). Economic and environmental implications of the recent energy transition on South Korea’s electricity sector. Energy & Environment, 29(5), 752–769. https://doi.org/10.1177/0958305x18759177
Kim, H., & Jeon, E.-C. (2020). Structural Changes to Nuclear Energy Industries and the Economic Effects Resulting from Energy Transition Policies in South Korea. Energies, 13(7), 1806. https://doi.org/10.3390/en13071806
Kirby, A. (2023). Exploratory Bibliometrics: Using VOSviewer as a Preliminary Research Tool. Publications, 11(1), 10. https://doi.org/10.3390/publications11010010
Komiyama, R., & Fujii, Y. (2017). Assessment of post-Fukushima renewable energy policy in Japan’s nation-wide power grid. Energy Policy, 101, 594–611. https://doi.org/10.1016/j.enpol.2016.11.006
Kong, S., Yang, B., Tuo, F., et al. (2022). Advance on monitoring of radioactivity in food in China and Japan after Fukushima nuclear accident. Radiation Medicine and Protection, 3(1), 37–42. https://doi.org/10.1016/j.radmp.2022.01.006
Kristiansen, S., Bonfadelli, H., & Kovic, M. (2016). Risk Perception of Nuclear Energy After Fukushima: Stability and Change in Public Opinion in Switzerland. International Journal of Public Opinion Research, edw021. https://doi.org/10.1093/ijpor/edw021
Kuramochi, T. (2015). Review of energy and climate policy developments in Japan before and after Fukushima. Renewable and Sustainable Energy Reviews, 43, 1320–1332. https://doi.org/10.1016/j.rser.2014.12.001
Kuzior, A., Sira, M. (2022). A Bibliometric Analysis of Blockchain Technology Research Using VOSviewer. Sustainability, 14(13), 8206. https://doi.org/10.3390/su14138206
Larsson, P. (2013). Evaluation of Open Source Data Cleaning Tools: Open Refine and Data Wrangler. University of Washington.
Li, R., Wang, Q., & Li, lejia. (2023). Does renewable energy reduce per capita carbon emissions and per capita ecological footprint? New evidence from 130 countries. Energy Strategy Reviews, 49, 101121. https://doi.org/10.1016/j.esr.2023.101121
Locatelli, G., Mancini, M., & Todeschini, N. (2013). Generation IV nuclear reactors: Current status and future prospects. Energy Policy, 61, 1503-1520. https://doi.org/10.1016/j.enpol.2013.06.101 https://doi.org/10.1016/j.enpol.2013.06.101
Lund, H. (2007). Renewable energy strategies for sustainable development. Energy, 32(6), 912–919. https://doi.org/10.1016/j.energy.2006.10.017
Mahmud, S. M. H., Hossin, M. A., Jahan, H., et al. (2018). Csv2rdf: Generating rdf data from csv file using semantic web technologies. Journal of Theoretical and Applied Information Technology, 96(20), 6889-6902.
Mongeon, P., & Paul-Hus, A. (2015). The journal coverage of Web of Science and Scopus: a comparative analysis. Scientometrics, 106(1), 213–228. https://doi.org/10.1007/s11192-015-1765-5
Murakami, K., Ida, T., Tanaka, M., et al. (2015). Consumers’ willingness to pay for renewable and nuclear energy: A comparative analysis between the US and Japan. Energy Economics, 50, 178–189. https://doi.org/10.1016/j.eneco.2015.05.002
Nohrstedt, D. (2005). External shocks and policy change: Three Mile Island and Swedish nuclear energy policy. Journal of European Public Policy, 12(6), 1041–1059. https://doi.org/10.1080/13501760500270729
Oka, Y. (2022). Risks and benefits of evacuation in TEPCO’s Fukushima Daiichi nuclear power station accident. Progress in Nuclear Energy, 148, 104222. https://doi.org/10.1016/j.pnucene.2022.104222
Olander, D. (2009). Nuclear fuels – Present and future. Journal of Nuclear Materials, 389(1), 1–22. https://doi.org/10.1016/j.jnucmat.2009.01.297
Park, E. (2019). Positive or negative? Public perceptions of nuclear energy in South Korea: Evidence from Big Data. Nuclear Engineering and Technology, 51(2), 626–630. https://doi.org/10.1016/j.net.2018.10.025
Park, E., & Ohm, J. Y. (2014). Factors influencing the public intention to use renewable energy technologies in South Korea: Effects of the Fukushima nuclear accident. Energy Policy, 65, 198–211. https://doi.org/10.1016/j.enpol.2013.10.037
Poortinga, W., Aoyagi, M., & Pidgeon, N. F. (2013). Public perceptions of climate change and energy futures before and after the Fukushima accident: A comparison between Britain and Japan. Energy Policy, 62, 1204–1211. https://doi.org/10.1016/j.enpol.2013.08.015
Ratiko, R., Wisnubroto, D. S., Nasruddin, N., et al. (2020). Current and future strategies for spent nuclear fuel management in Indonesia. Energy Strategy Reviews, 32, 100575. https://doi.org/10.1016/j.esr.2020.100575
Sánchez, A. D., de la Cruz Del Río Rama, M., & García, J. Á. (2017). Bibliometric analysis of publications on wine tourism in the databases Scopus and WoS. European Research on Management and Business Economics, 23(1), 8–15. https://doi.org/10.1016/j.iedeen.2016.02.001
Shadrina, E. (2012). Fukushima fallout: Gauging the change in Japanese nuclear energy policy. International Journal of Disaster Risk Science, 3(2), 69–83. https://doi.org/10.1007/s13753-012-0008-0
Shafii, M. A., Septi, R., Handayani Irka, F., et al. (2021). Neutronic analysis of sodium‐cooled fast reactor design with different fuel types using modified CANDLE shuffling strategy in a radial direction. International Journal of Energy Research, 45(8), 12272–12283. Portico. https://doi.org/10.1002/er.6384
Shim, J., Park, C., & Wilding, M. (2015). Identifying policy frames through semantic network analysis: an examination of nuclear energy policy across six countries. Policy Sciences, 48(1), 51–83. https://doi.org/10.1007/s11077-015-9211-3
Solomon, B. D., & Krishna, K. (2011). The coming sustainable energy transition: History, strategies, and outlook. Energy Policy, 39(11), 7422–7431. https://doi.org/10.1016/j.enpol.2011.09.009
Srinivasan, T. N., & Gopi Rethinaraj, T. S. (2013). Fukushima and thereafter: Reassessment of risks of nuclear power. Energy Policy, 52, 726–736. https://doi.org/10.1016/j.enpol.2012.10.036
Stan, M. (2009). Discovery and design of nuclear fuels. Materials Today, 12(11), 20-28. https://doi.org/10.1016/S1369-7021(09)70295-0 https://doi.org/10.1016/S1369-7021(09)70295-0
Steding, D. (2011). Fukushima and the Future of US Energy Policy. SCIENCE, LAW & THE ENVIRONMENT. https://www.sciencelawenvironment.com/2011/03/fukushima-and-the-future-of-us-energy-policy/
Steinhauser, G., Brandl, A., & Johnson, T. E. (2014). Comparison of the Chernobyl and Fukushima nuclear accidents: A review of the environmental impacts. Science of The Total Environment, 470–471, 800–817. https://doi.org/10.1016/j.scitotenv.2013.10.029
Susiati, H., Dede, Moh., Widiawaty, M. A., et al. (2022). Site suitability-based spatial-weighted multicriteria analysis for nuclear power plants in Indonesia. Heliyon, 8(3), e09088. https://doi.org/10.1016/j.heliyon.2022.e09088
Takeuchi, M. R. H., Hasegawa, T., Hardie, S. M. L., et al. (2021). Scientific justifications for the political decision-making on environmental remediation carried out after the Fukushima nuclear accident. Heliyon, 7(3), e06588. https://doi.org/10.1016/j.heliyon.2021.e06588
Tripathi, L., Mishra, A. K., Dubey, A. K., et al. (2016). Renewable energy: An overview on its contribution in current energy scenario of India. Renewable and Sustainable Energy Reviews, 60, 226–233. https://doi.org/10.1016/j.rser.2016.01.047
Upham, D. P., Sovacool, P. B., & Ghosh, D. B. (2022). Just transitions for industrial decarbonisation: A framework for innovation, participation, and justice. Renewable and Sustainable Energy Reviews, 167, 112699. https://doi.org/10.1016/j.rser.2022.112699
van der Walt, H. B., van Niekerk, F., & Reitsma, F. (2023). Implementation of in-rod axially heterogeneous thorium-uranium fuel in a typical PWR. Nuclear Engineering and Design, 408, 112319. https://doi.org/10.1016/j.nucengdes.2023.112319
van Eck, N. J., & Waltman, L. (2009). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538. https://doi.org/10.1007/s11192-009-0146-3
Vechgama, W., Sasawattakul, W., & Silva, K. (2023). 2009–2022 Thailand public perception analysis of nuclear energy on social media using deep transfer learning technique. Nuclear Engineering and Technology, 55(6), 2026–2033. https://doi.org/10.1016/j.net.2023.03.036
Verbruggen, A. (2008). Renewable and nuclear power: A common future? Energy Policy, 36(11), 4036–4047. https://doi.org/10.1016/j.enpol.2008.06.024
Wang, C.-N., Su, C.-C., & Nguyen, V. (2018). Nuclear Power Plant Location Selection in Vietnam under Fuzzy Environment Conditions. Symmetry, 10(11), 548. https://doi.org/10.3390/sym10110548
Wang, F., Gu, J., & Wu, J. (2020). Perspective taking, energy policy involvement, and public acceptance of nuclear energy: Evidence from China. Energy Policy, 145, 111716. https://doi.org/10.1016/j.enpol.2020.111716
Wang, X., & Lo, K. (2021). Just transition: A conceptual review. Energy Research & Social Science, 82, 102291. https://doi.org/10.1016/j.erss.2021.102291
Wisnubroto, D. S., Khairul, K., Basuki, F., et al. (2023). Preventing and countering insider threats and radicalism in an Indonesian research reactor: Development of a human reliability program (HRP). Heliyon, 9(5), e15685. https://doi.org/10.1016/j.heliyon.2023.e15685
Wisnubroto, D. S., Sunaryo, G. R., Susilo, Y. S. B., et al. (2023). Indonesia’s experimental power reactor program (RDE). Nuclear Engineering and Design, 404, 112201. https://doi.org/10.1016/j.nucengdes.2023.112201
Wisnubroto, D. S., Zamroni, H., Sumarbagiono, R., et al. (2021). Challenges of implementing the policy and strategy for management of radioactive waste and nuclear spent fuel in Indonesia. Nuclear Engineering and Technology, 53(2), 549–561. https://doi.org/10.1016/j.net.2020.07.005
Wittneben, B. B. F. (2012). The impact of the Fukushima nuclear accident on European energy policy. Environmental Science & Policy, 15(1), 1–3. https://doi.org/10.1016/j.envsci.2011.09.002
Wu, J., & Tran, N. (2018). Application of Blockchain Technology in Sustainable Energy Systems: An Overview. Sustainability, 10(9), 3067. https://doi.org/10.3390/su10093067
Xia, D., Li, Y., He, Y., et al. (2019). Exploring the role of cultural individualism and collectivism on public acceptance of nuclear energy. Energy Policy, 132, 208–215. https://doi.org/10.1016/j.enpol.2019.05.014
Yolcan, O. O. (2023). World energy outlook and state of renewable energy: 10-Year evaluation. Innovation and Green Development, 2(4), 100070. https://doi.org/10.1016/j.igd.2023.100070
Yu, S., Wei, Y.-M., & Wang, K. (2012). China’s primary energy demands in 2020: Predictions from an MPSO–RBF estimation model. Energy Conversion and Management, 61, 59–66. https://doi.org/10.1016/j.enconman.2012.03.016
Zhou, N., Price, L., Yande, D., et al. (2019). A roadmap for China to peak carbon dioxide emissions and achieve a 20% share of non-fossil fuels in primary energy by 2030. Applied Energy, 239, 793–819. https://doi.org/10.1016/j.apenergy.2019.01.154
Zittel, W., Zerhusen, J., Zerta, M., & Arnold, M. N. (2013). Fossil and Nuclear Fuels - the Supply Outlook. Energy Watch Group / Ludwig-Boelkow-Foundation /Reiner-Lemoine-Foundation.
DOI: https://doi.org/10.24294/jipd.v8i7.4449
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Mohammad Ali Shafii, Ade Gafar Abdullah, Syeilendra Pramuditya, Topan Setiadipura, Kurnia Anzhar
License URL: https://creativecommons.org/licenses/by/4.0/
This site is licensed under a Creative Commons Attribution 4.0 International License.