Hedging crude oil and currencies fluctuations

Heni Boubaker, Mouna Ben Saad Zorgati

Article ID: 4238
Vol 8, Issue 5, 2024

VIEWS - 1598 (Abstract)

Abstract


Relying on the D-Vine copula model, this paper delves into the hedging capabilities of Brent crude oil against the exchange rate of oil-exporting and oil-importing nations. The results affirm Brent crude oil’s role as a safeguard and a refuge against the fluctuations of major currencies. Furthermore, we reaffirm that oil retains its robust hedging and safe-haven attributes during times of crisis, with currency co-movements across all countries exhibiting greater correlation than during the entire dataset. Additionally, our empirical findings highlight an unusually positive correlation between Brent crude oil and the Russian exchange rate during the Russia-Ukraine conflict, demonstrating that oil functions as a less effective hedge and a less dependable refuge for the Russian exchange rate in such geopolitical turbulence.


Keywords


crude oil; exchange rate; risk; hedging; drawable vine; crisis

Full Text:

PDF


References


Aas, K., Czado, C., Frigessi, A., et al. (2009). Pair-copula constructions of multiple dependence. Insurance: Mathematics and Economics, 44(2), 182–198. https://doi.org/10.1016/j.insmatheco.2007.02.001 Akalpler, E., & BAKAR, A. N. (2018). The impact of oil price instability on economic growth: Evidence from Nigeria. Business Economics and Management Research Journal, 1(1), 39–53. Alexander, J. M., Frey, R., Embrechts, P., Duffie, D., & Schaefer, S. (2005). Quantitative Risk Management: Concepts, Techniques and Tools. Princeton University Press: Princeton and Oxford. Ali, S. R. M., Mensi, W., Anik, K. I., et al. (2022). The impacts of COVID-19 crisis on spillovers between the oil and stock markets: Evidence from the largest oil importers and exporters. Economic Analysis and Policy, 73, 345–372. https://doi.org/10.1016/j.eap.2021.11.009 Aloui, R., Ben Aïssa, M. S., & Nguyen, D. K. (2013). Conditional dependence structure between oil prices and exchange rates: A copula-GARCH approach. Journal of International Money and Finance, 32, 719–738. https://doi.org/10.1016/j.jimonfin.2012.06.006 Amano, R. A., & Van Norden, S. (1998). Oil prices and the rise and fall of the US real exchange rate. Journal of international Money and finance, 17(2), 299–316. Bagchi, B., & Paul, B. (2023). Effects of Crude Oil Price Shocks on Stock Markets and Currency Exchange Rates in the Context of Russia-Ukraine Conflict: Evidence from G7 Countries. Journal of Risk and Financial Management, 16(2), 64. https://doi.org/10.3390/jrfm16020064 Bal, D. P., & Rath, B. N. (2015). Nonlinear causality between crude oil price and exchange rate: A comparative study of China and India. Energy Economics, 51, 149–156. https://doi.org/10.1016/j.eneco.2015.06.013 Basher, S. A., Haug, A. A., & Sadorsky, P. (2012). Oil prices, exchange rates and emerging stock markets. Energy Economics, 34(1), 227–240. https://doi.org/10.1016/j.eneco.2011.10.005 Beckmann, J., & Czudaj, R. (2013). Oil prices and effective dollar exchange rates. International Review of Economics & Finance, 27, 621–636. https://doi.org/10.1016/j.iref.2012.12.002 Beckmann, J., & Czudaj, R. L. (2022). Exchange rate expectation, abnormal returns, and the COVID-19 pandemic. Journal of Economic Behavior & Organization, 196, 1–25. https://doi.org/10.1016/j.jebo.2022.02.002 Beckmann, J., Czudaj, R. L., & Arora, V. (2020). The relationship between oil prices and exchange rates: Revisiting theory and evidence. Energy Economics, 88, 104772. https://doi.org/10.1016/j.eneco.2020.104772 Bedford, T., & Cooke, R. M. (2001). Probability density decomposition for conditionally dependent random variables modeled by vines. Annals of Mathematics and Artificial intelligence, 32, 245–268. Bedford, T., & Cooke, R. M. (2002). Vines--a new graphical model for dependent random variables. The Annals of Statistics, 30(4). https://doi.org/10.1214/aos/1031689016 Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of econometrics, 31(3), 307–327. Boubaker, H., & Raza, S. A. (2016). On the dynamic dependence and asymmetric co-movement between the US and Central and Eastern European transition markets. Physica A: Statistical Mechanics and Its Applications, 459, 9–23. https://doi.org/10.1016/j.physa.2016.04.028 Boubaker, H., & Sghaier, N. (2013). Portfolio optimization in the presence of dependent financial returns with long memory: A copula based approach. Journal of Banking & Finance, 37(2), 361–377. https://doi.org/10.1016/j.jbankfin.2012.09.006 Bourghelle, D., Jawadi, F., & Rozin, P. (2021). Oil price volatility in the context of Covid-19. International Economics, 167, 39–49. https://doi.org/10.1016/j.inteco.2021.05.001 Bouyé, E., Durrleman, V., Nikeghbali, A., et al. (2000). Copulas for Finance - A Reading Guide and Some Applications. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.1032533 Brander, J., & Krugman, P. (1983). A ‘reciprocal dumping’model of international trade. Journal of international economics, 15(3–4), 313–321. Carollo, S. (2011). Understanding oil prices: A guide to what drives the price of oil in today’s markets. John Wiley & Sons. Chen, S.-S., & Chen, H.-C. (2007). Oil prices and real exchange rates. Energy Economics, 29(3), 390–404. https://doi.org/10.1016/j.eneco.2006.08.003 Coles, S., Heffernan, J., & Tawn, J. (1999). Dependence measures for extreme value analyses. Extremes, 2, 339–365. Conover, C. M., Jensen, G. R., Johnson, R. R., et al. (2010). Is Now the Time to Add Commodities to Your Portfolio? The Journal of Investing, 19(3), 10–19. https://doi.org/10.3905/joi.2010.19.3.010 Cuñado, J., & de Gracia, F. P. (2003). Do oil price shocks matter? Evidence for some European countries. Energy economics, 25(2), 137–154. Cunado, J., & Perez de Gracia, F. (2005). Oil prices, economic activity and inflation: evidence for some Asian countries. The Quarterly Review of Economics and Finance, 45(1), 65–83. https://doi.org/10.1016/j.qref.2004.02.003 Cunado, J., & Perez de Gracia, F. (2014). Oil price shocks and stock market returns: Evidence for some European countries. Energy Economics, 42, 365–377. https://doi.org/10.1016/j.eneco.2013.10.017 Czado, C., Schepsmeier, U., & Min, A. (2012). Maximum likelihood estimation of mixed C-vines with application to exchange rates. Statistical Modelling, 12(3), 229–255. https://doi.org/10.1177/1471082x1101200302 Ding, Z., Granger, C. W., & Engle, R. F. (1993). A long memory property of stock market returns and a new model. Journal of empirical finance, 1(1), 83–106. Engle, R. F. (1982). Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation. Econometrica, 50(4), 987. https://doi.org/10.2307/1912773 Fischer, M. J., & Dörflinger, M. (2006). A note on a non-parametric tail dependence estimator (No. 76/2006). Diskussionspapier. Fratzscher, M., Schneider, D., & Van Robays, I. (2014). Oil Prices, Exchange Rates and Asset Prices. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.2442276 Frunza, M. C. (2015). Introduction to the theories and varieties of modern crime in financial markets. Academic Press. Genest, C., & Mackay, J. (1986). The Joy of Copulas: Bivariate Distributions with Uniform Marginals. The American Statistician, 40(4), 280–283. https://doi.org/10.1080/00031305.1986.10475414 Genest, C., & Rivest, L.-P. (1993). Statistical Inference Procedures for Bivariate Archimedean Copulas. Journal of the American Statistical Association, 88(423), 1034–1043. https://doi.org/10.1080/01621459.1993.10476372 Genest, C., Quessy, J. F., & Rémillard, B. (2006). Goodness‐of‐fit procedures for copula models based on the probability integral transformation. Scandinavian Journal of Statistics, 33(2), 337–366. Portico. https://doi.org/10.1111/j.1467-9469.2006.00470.x Ghorbel, A., Hamma, W., & Jarboui, A. (2017). Dependence between oil and commodities markets using time-varying Archimedean copulas and effectiveness of hedging strategies. Journal of Applied Statistics, 44(9), 1509–1542. https://doi.org/10.1080/02664763.2016.1155107 Glosten, L. R., Jagannathan, R., & Runkle, D. E. (1993). On the relation between the expected value and the volatility of the nominal excess return on stocks. The Journal of Finance, 48(5), 1779–1801. Portico. https://doi.org/10.1111/j.1540-6261.1993.tb05128.x Golub, S. S. (1983). Oil Prices and Exchange Rates. The Economic Journal, 93(371), 576. https://doi.org/10.2307/2232396 Gumbel, E. J. (1958). Statistics of extremes. Columbia University Press. Herrera, A. M., Karaki, M. B., & Rangaraju, S. K. (2017). Where do jobs go when oil prices drop? Energy Economics, 64, 469–482. https://doi.org/10.1016/j.eneco.2016.02.006 Hollander, M., Wolfe, D. A., & Chicken, E. (2013). Nonparametric statistical methods. John Wiley & Sons. Hussain, M., Bashir, U., & Rehman, R. U. (2023). Exchange Rate and Stock Prices Volatility Connectedness and Spillover during Pandemic Induced-Crises: Evidence from BRICS Countries. Asia-Pacific Financial Markets, 31(1), 183–203. https://doi.org/10.1007/s10690-023-09411-0 Ielpo, F., Merhy, C., & Simon, G. (2017). Engineering investment process: making value creation repeatable. Elsevier. Isah, K. O., & Ekeocha, P. (2023). Modelling exchange rate volatility in turbulent periods: The role of oil prices in Nigeria. Scientific African, 19, e01520. https://doi.org/10.1016/j.sciaf.2022.e01520 Jain, A., Biswal, P. C., & Ghosh, S. (2016). Volatility–volume causality across single stock spot–futures markets in India. Applied Economics, 48(34), 3228–3243. https://doi.org/10.1080/00036846.2015.1136401 Jiang, Y., Feng, Q., Mo, B., et al. (2020). Visiting the effects of oil price shocks on exchange rates: Quantile-on-quantile and causality-in-quantiles approaches. The North American Journal of Economics and Finance, 52, 101161. https://doi.org/10.1016/j.najef.2020.101161 Joe, H. (1997). Multivariate models and multivariate dependence concepts. CRC Press. Karaki, M. B. (2017). Nonlinearities in the response of real GDP to oil price shocks. Economics Letters, 161, 146-148. Karmous, A., Boubaker, H., & Belkacem, L. (2021). Forecasting Volatility for an Optimal Portfolio with Stylized Facts Using Copulas. Computational Economics, 58(2), 461-482. Krugman, P. (1983). Oil shocks and exchange rate dynamics. In Exchange rates and international macroeconomics (pp. 259-284). University of Chicago Press. Kruskal, W. H. (1958). Ordinal measures of association. Journal of the American Statistical Association, 53(284), 814-861.. Kyophilavong, P., Abakah, E. J. A., & Tiwari, A. K. (2023). Cross-spectral coherence and co-movement between WTI oil price and exchange rate of Thai Baht. Resources Policy, 80, 103160. https://doi.org/10.1016/j.resourpol.2022.103160 Lehmann, E. L., & D’Abrera, H. J. (1975). Nonparametrics: Statistical methods based on ranks. Holden-day. Lei, L., Aziz, G., Sarwar, S., Waheed, R., & Tiwari, A. K. (2023). Spillover and portfolio analysis for oil and stock market: A new insight across financial crisis, COVID-19 and Russian-Ukraine war. Resources Policy, 85, 103645. https://doi.org/10.1016/j.resourpol.2023.103645 Liu, C., Naeem, M. A., Rehman, M. U., et al. (2020). Oil as Hedge, Safe-Haven, and Diversifier for Conventional Currencies. Energies, 13(17), 4354. https://doi.org/10.3390/en13174354 Ma, R. R., Xiong, T., & Bao, Y. (2021). The Russia-Saudi Arabia oil price war during the COVID-19 pandemic. Energy Economics, 102, 105517. https://doi.org/10.1016/j.eneco.2021.105517 Malik, F., & Ewing, B. T. (2009). Volatility transmission between oil prices and equity sector returns. International Review of Financial Analysis, 18(3), 95–100. https://doi.org/10.1016/j.irfa.2009.03.003 Malik, F., & Umar, Z. (2019). Dynamic connectedness of oil price shocks and exchange rates. Energy Economics, 84, 104501. https://doi.org/10.1016/j.eneco.2019.104501 Martínez Raya, A., Segura de la Cal, A., & Rodríguez Oromendía, A. (2023). Financialization of Real Estate Assets: A Comprehensive Approach to Investment Portfolios through a Gender-Based Study. Buildings, 13(10), 2487. https://doi.org/10.3390/buildings13102487 Mensi, W., Hammoudeh, S., Shahzad, S. J. H., et al. (2017). Oil and foreign exchange market tail dependence and risk spillovers for MENA, emerging and developed countries: VMD decomposition based copulas. Energy Economics, 67, 476–495. https://doi.org/10.1016/j.eneco.2017.08.036 Mikhaylov, A., Bhatti, I. M., Dinçer, H., et al. (2024). Integrated decision recommendation system using iteration-enhanced collaborative filtering, golden cut bipolar for analyzing the risk-based oil market spillovers. Computational Economics, 63(1), 305–338. https://doi.org/10.1007/s10614-022-10341-8 Nandelenga, M. W., & Simpasa, A. M. (2020). Oil price and exchange rate dependence in selected countries. African Development Bank. Nelson, D. B. (1991). Conditional Heteroskedasticity in Asset Returns: A New Approach. Econometrica, 59(2), 347. https://doi.org/10.2307/2938260 Nusair, S. A., & Olson, D. (2019). The effects of oil price shocks on Asian exchange rates: Evidence from quantile regression analysis. Energy Economics, 78, 44–63. https://doi.org/10.1016/j.eneco.2018.11.009 Opoku, R. T., Adam, A. M., Isshaq, Z. M., et al. (2023). Time-varying connectedness and contagion between commodity prices and exchange rate in Sub-Saharan Africa. Cogent Economics & Finance, 11(2). https://doi.org/10.1080/23322039.2023.2237714 Reboredo, J. C. (2012). Modelling oil price and exchange rate co-movements. Journal of Policy Modeling, 34(3), 419–440. https://doi.org/10.1016/j.jpolmod.2011.10.005 Reboredo, J. C., & Rivera-Castro, M. A. (2013). A wavelet decomposition approach to crude oil price and exchange rate dependence. Economic Modelling, 32, 42–57. https://doi.org/10.1016/j.econmod.2012.12.028 Regnier, E. (2007). Oil and energy price volatility. Energy Economics, 29(3), 405–427. https://doi.org/10.1016/j.eneco.2005.11.003 Salisu, A. A., Olaniran, A., & Tchankam, J. P. (2022). Oil tail risk and the tail risk of the US Dollar exchange rates. Energy Economics, 109, 105960. https://doi.org/10.1016/j.eneco.2022.105960 Sebai, S., & Naoui, K. (2015). A study of the interactive relationship between oil price and exchange rate: A copula approach and a DCC-MGARCH model. The Journal of Economic Asymmetries, 12(2), 173–189. https://doi.org/10.1016/j.jeca.2015.09.002 Shang, J., & Hamori, S. (2023). Differential Tail Dependence between Crude Oil and Forex Markets in Oil-Importing and Oil-Exporting Countries during Recent Crisis Periods. Sustainability, 15(19), 14445. https://doi.org/10.3390/su151914445 Shih, J. H., & Louis, T. A. (1995). Inferences on the Association Parameter in Copula Models for Bivariate Survival Data. Biometrics, 51(4), 1384. https://doi.org/10.2307/2533269 Sklar, M. (1959). N-dimensional distribution functions and their margins (French). Annales de l’ISUP, 8(3), 229–231. Sokhanvar, A., & Bouri, E. (2023). Commodity price shocks related to the war in Ukraine and exchange rates of commodity exporters and importers. Borsa Istanbul Review, 23(1), 44–54. https://doi.org/10.1016/j.bir.2022.09.001 Su, C.-W., Qin, M., Tao, R., et al. (2020). Factors driving oil price—from the perspective of United States. Energy, 197, 117219. https://doi.org/10.1016/j.energy.2020.117219 Synthetic Complex Data Generation Using. (2021). In: Proceedings of the 23rd International Workshop on Design, Optimization, Languages. Tiwari, A. K., Shahbaz, M., Khalfaoui, R., et al. (2022). Directional predictability from energy markets to exchange rates and stock markets in the emerging market countries (E7 + 1): New evidence from cross‐quantilogram approach. International Journal of Finance & Economics, 29(1), 719–789. Portico. https://doi.org/10.1002/ijfe.2706 Umar, Z., Aziz, M. I. A., Zaremba, A., et al. (2023). Modelling dynamic connectedness between oil price shocks and exchange rates in ASEAN+3 economies. Applied Economics, 55(23), 2676–2693. https://doi.org/10.1080/00036846.2022.2104801 Wang, X., Wu, X., & Zhou, Y. (2022). Conditional Dynamic Dependence and Risk Spillover between Crude Oil Prices and Foreign Exchange Rates: New Evidence from a Dynamic Factor Copula Model. Energies, 15(14), 5220. https://doi.org/10.3390/en15145220 Zaremba, A., Umar, Z., & Mikutowski, M. (2021). Commodity financialisation and price co-movement: Lessons from two centuries of evidence. Finance Research Letters, 38, 101492. https://doi.org/10.1016/j.frl.2020.101492 Zeng, H., Ahmed, A. D., Lu, R., et al. (2022). Dependence and spillover among oil market, China’s stock market and exchange rate: new evidence from the Vine-Copula-CoVaR and VAR-BEKK-GARCH frameworks. Heliyon, 8(11), e11737. https://doi.org/10.1016/j.heliyon.2022.e11737 Zorgati, M. B. S. (2023). Risk Measure between Exchange Rate and Oil Price during Crises: Evidence from Oil-Importing and Oil-Exporting Countries. Journal of Risk and Financial Management, 16(4), 250. https://doi.org/10.3390/jrfm16040250



DOI: https://doi.org/10.24294/jipd.v8i5.4238

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Heni Boubaker, Mouna Ben Saad Zorgati

License URL: https://creativecommons.org/licenses/by/4.0/

This site is licensed under a Creative Commons Attribution 4.0 International License.