References
Ahmed, S. A. (2017). Practical application of anti-money laundering requirements in Bangladesh: an insight into the disparity between anti-money laundering methods and their effectiveness based on resources and infrastructure. Journal of Money Laundering Control, 20(4), 428-450. https://doi.org/10.1108/jmlc-09-2016-0042
Alsuwailem, A. A. S., & Saudagar, A. K. J. (2020). Anti-money laundering systems: a systematic literature review. Journal of Money Laundering Control, 23(4), 833-848. https://doi.org/10.1108/jmlc-02-2020-0018
Barone, R., & Schneider, F. (2018). Money Laundering: A Review Essay and Policy Implication: SSRN.
Bhattacharya, D. (2018). Bangladesh’s Graduation from the Least Developed Countries Group: Pitfalls and Promises: Routledge.
Bozhilova, K. (2018). European Union: European commission proposes new anti-money laundering directives.
Dreżewski, R., Sepielak, J., & Filipkowski, W. (2015). The application of social network analysis algorithms in a system supporting money laundering detection. Information Sciences, 295, 18-32. https://doi.org/10.1016/j.ins.2014.10.015
Ferdousy, L. (2022). Consequences of Money Laundering and Persisting Losses of the Country: A Reference of Bangladesh. Saudi J Econ Fin, 6(11), 378-387. https://doi.org/10.36348/sjef.2022.v06i11.003
Ferwerda, J., Kattenberg, M., Chang, H.-H., Unger, B., Groot, L., & Bikker, J. A. (2013). Gravity models of trade-based money laundering. Applied economics, 45(22), 3170-3182. https://doi.org/10.1080/00036846.2012.699190
Getoor, L., Friedman, N., Koller, D., & Taskar, B. (2001). Learning probabilistic models of relational structure. Paper presented at the ICML.
Ghulam, Y., & Szalay, B. (2023). Investigating the determinants of money laundering risk. Journal of Money Laundering Control.
Haq, M. Z., Ayub, Z. A., Yusoff, Z. M., & Khan, M. A. A. (2021). Factors influencing anti-money laundering regulatory approaches towards casinos and cryptocurrencies in Bangladesh. Journal of Money Laundering Control, 25(2), 445-454.
Hassan, M., & Schneider, F. (2016). Size and development of the shadow economies of 157 countries worldwide: Updated and new measures from 1999 to 2013. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.2861026
Hossen, M. S., Roy, S., & Masum, M. H. (2023). Financial performance of engineering companies in an emerging economy: Before and after COVID-19. Research In Management and Accounting (RIMA), 6(2), 73-90. https://doi.org/10.33508/rima.v6i2.4943
Integrity, G. F. (2019). Illicit financial flows to and from 148 developing countries: 2006-2015. Washington, DC: Global Financial Integrity.
Jakobi, A. P. (2018). Governing illicit finance in transnational security spaces: the FATF and anti-money laundering. Crime, Law and Social Change, 69, 173-190. https://doi.org/10.1007/s10611-017-9750-y
Jensen, R. I. T., & Iosifidis, A. (2023). Fighting money laundering with statistics and machine learning. IEEE Access, 11, 8889-8903. https://doi.org/10.1109/access.2023.3239549
Jullum, M., Løland, A., Huseby, R. B., et al. (2020). Detecting money laundering transactions with machine learning. Journal of Money Laundering Control, 23(1), 173-186. https://doi.org/10.1108/jmlc-07-2019-0055
Kaufmann, D., & Kaliberda, A. (1996). Integrating the unofficial economy into the dynamics of post-socialist economies: A framework of analysis and evidence. The International Politics of Eurasia: v. 8: Economic Transition in Russia and the New States of Eurasia. Routledge. pp. 81-120. https://doi.org/10.1596/1813-9450-1691
Kemsley, D., Kemsley, S. A., & Morgan, F. T. (2022). Tax evasion and money laundering: a complete framework. Journal of Financial Crime, 29(2), 589-602. https://doi.org/10.1108/jfc-09-2020-0175
Kumar, S., Ahmed, R., Bharany, S., et al. (2022). Exploitation of Machine Learning Algorithms for Detecting Financial Crimes Based on Customers’ Behavior. Sustainability, 14(21), 13875. https://doi.org/10.3390/su142113875
Masum, M. H., Latiff, A. R. A., & Osman, M. N. H. (2020). Voluntary Reporting, Sustainable Reporting and Transition Economy. International Business and Accounting Research Journal, 4(2), 81-88. https://doi.org/10.15294/ibarj.v4i2.126
Masum, M. H., Latiff, A. R. A., & Osman, M. N. H. (2021). Determinants of corporate voluntary disclosure in a transition economy. Problems and Perspectives in Management, 18(4), 130.
Masum, M. H., Latiff, A. R. A., Osman, M. N. H., et al. (2023). Impact of corporate characteristics on voluntary disclosure: A Managerial insight. Polish Journal of Management Studies, 28(1). https://doi.org/10.17512/pjms.2023.28.1.12
Medina, L., & Schneider, F. G. (2019). Shedding Light on the Shadow Economy: A Global Database and the Interaction with the Official One. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3502028
Mubalaike, A. M., & Adali, E. (2018). Deep learning approach for intelligent financial fraud detection system. Paper presented at the 2018 3rd International Conference on Computer Science and Engineering (UBMK). https://doi.org/10.1109/ubmk.2018.8566574
Pol, R. F. (2018). Anti-money laundering effectiveness: assessing outcomes or ticking boxes? Journal of Money Laundering Control, 21(2), 215-230. https://doi.org/10.1108/jmlc-07-2017-0029
Rahman, S. H., Ahmed, K. N., Aziz, S. S., et al. (2015). The State of Governance Bangladesh 2014-2015: institutions, outcomes, accountability.
Sivaguru, D., & Tilakasiri, K. (2023). The phenomenon of trade-based money laundering (TBML)—a critical review in Sri Lankan context. Journal of Money Laundering Control, 26(6), 1088–1099. https://doi.org/10.1108/jmlc-10-2022-0151
Solaiman, S. (2018). “Captured by evils”—combating black money, corruption and money laundering in Bangladesh: The dog must bark to keep predators away. Journal of Money Laundering Control, 21(3), 264-289. https://doi.org/10.1108/jmlc-06-2017-0020
Suresh, C., Reddy, K. T., & Sweta, N. (2016). A hybrid approach for detecting suspicious accounts in money laundering using data mining techniques. International Journal of Information Technology and Computer Science (IJITCS), 8(5), 37. https://doi.org/10.5815/ijitcs.2016.05.04
Syed Mustapha Nazri, S. N. F., Zolkaflil, S., & Omar, N. (2019). Mitigating financial leakages through effective money laundering investigation. Managerial Auditing Journal, 34(2), 189-207. https://doi.org/10.1108/maj-03-2018-1830
Tiwari, M., Gepp, A., & Kumar, K. (2020). A review of money laundering literature: the state of research in key areas. Pacific Accounting Review, 32(2), 271–303. https://doi.org/10.1108/par-06-2019-0065
Umar, B. (2023). Effects of trade misinvoicing on money laundering in developing economies. Journal of Money Laundering Control, 26(1), 60-68. https://doi.org/10.1108/jmlc-11-2021-0124
Unger, B. (2013). Can money laundering decrease? Public Finance Review, 41(5), 658-676. https://doi.org/10.1177/1091142113483353
Waris, A., & Khan, L. L. (2013). Black money whitening law: a study from Bangladesh.
World Bank. (2024). “GDP (current US$)—Bangladesh. Available online: https://data.worldbank.org/indicator/NY.GDP.MKTP.CD?locations=BD (accessed on 1 May 2023).
Zafarullah, H., & Haque, H. (2023). Policies, instrumentalities, compliance and control: combatting money laundering in Bangladesh. Journal of Money Laundering Control, 26(1), 189-204. https://doi.org/10.1108/jmlc-10-2021-0109
Zhang, Z., Salerno, J. J., & Yu, P. S. (2003). Applying data mining in investigating money laundering crimes. Paper presented at the Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining. https://doi.org/10.1145/956750.956851
Zhou, Y., Wang, X., Zhang, J., et al. (2017). Analyzing and detecting money-laundering accounts in online social networks. IEEE Network, 32(3), 115-121. https://doi.org/10.1109/mnet.2017.1700213
Zolkaflil, S., Syed Mustapha Nazri, S. N. F., Razali, F. M., et al. (2023). Money laundering framework for professional accountants: Post COVID-19. Journal of Nusantara Studies, 8(3). https://doi.org/10.24200/jonus.vol8iss3pp235-256
Copyright (c) 2024 Mofijul Hoq Masum, Amit Banik, Mohammad Tariq Hasan, Salwa Zolkaflil, Sharifah Nazatul Faiza Syed Mustapha Nazri, Fazlida Mohd Razali, Masetah Ahmad Tarmizi