Development of stock price prediction system using Flask framework and LSTM algorithm
Vol 7, Issue 3, 2023
Abstract
Keywords
Full Text:
PDFReferences
Anggoro DA, Aziz NC (2021). Implementation of K-Nearest Neighbors algorithm for predicting heart disease using Python Flask. Iraqi Journal of Science 62(9): 3196–3219. doi: 10.24996/IJS.2021.62.9.33
Bathla G (2020). Stock price prediction using LSTM and SVR. In: Proceeding of the 2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC); IEEE; pp. 211–214.
Dong S, Wang P, Abbas K (2021). A survey on deep learning and its applications. Computer Science Review 40: 100379. doi: 10.1016/J.COSREV.2021.100379
Guha SK, Samanta N, Majumdar A, et al. (2019). Evolution of corporate governance in India and its impact on the growth of the financial market: An empirical analysis (1995–2014). Corporate Governance (Bingley) 19(5): 945–984. doi: 10.1108/CG-07-2018-0255
Hamdani NA, Yulianto E, Maulani GAF (2021). Designing loss event database using evolutionary prototyping model to perform bank operational risk management identification process. IOP Conference Series: Materials Science and Engineering 1098(4): 042008. doi: 10.1088/1757-899x/1098/4/042008
Hastomo W, Karno ASB, Kalbuana N, et al. (2021). Deep learning pptimization for stock predictions during the Covid-19 pandemic (Indonesian). JEPIN (Jurnal Edukasi dan Penelitian Informatika) 7(2): 133–140. doi: 10.26418/JP.V7I2.47411
Ilham RN, Irawati H, Nurhasanah N, et al. (2022). Relationship of working capital management and leverage on firm value: An evidence from the Indonesia stock exchange. Journal of Madani Society 1(2): 64–71. doi: 10.56225/JMSC.V1I2.129
Janiesch C, Zschech P, Heinrich K (2021). Machine learning and deep learning. Electronic Markets 31(3): 685–695. doi: 10.1007/s12525-021-00475-2
Kumar MP, Kumara NM (2020). Market capitalization: Pre and post COVID-19 analysis. Materials Today: Proceedings 37(2): 2553–2557. doi: 10.1016/j.matpr.2020.08.493
Kyin MS, Oo ZL, Cho KM (2020). An overview studying of deep learning. International Journal of Scientific Research in Science Engineering and Technology 7(2): 394–398. doi: 10.32628/IJSRSET207279
Liang Z, Liang Z, Zheng Y, et al. (2021). Data analysis and visualization platform design for batteries using flask-based Python Web Service. World Electric Vehicle Journal 12(4): 187. doi: 10.3390/wevj12040187
Maruddani DAI, Trimono (2018). Modeling stock prices in a portfolio using multidimensional geometric brownian motion. Journal of Physics: Conference Series. doi: 10.1088/1742-6596/1025/1/012122
Meshram S, Narsale S, Sangamnere S, et al. (2022). Stock prediction webapp using Python. International Journal of Advanced Research in Science, Communication and Technology (IJARSCT) 2(7). doi: 10.48175/IJARSCT-4359
Mufid MR, Basofi A, Al Rasyid MUH, et al. (2019). Design an mvc model using python for Flask framework development. In: Proceedings of the 2019 International Electronics Symposium (IES); IEEE. doi: 10.1109/ELECSYM.2019.8901656
Prasad A, Seetharaman A (2021). Importance of machine learning in making investment decision in stock market. Vikalpa 46(4): 209–222. doi: 10.1177/02560909211059992
Prasetya BD, Pamungkas FS, Kharisudin I (2019). Modeling and forecasting stock data with time series analysis using Python (Indonesian). PRISMA, Prosiding Seminar Nasional Matematika 3: 714–718.
Rachma N, Muhlas I (2022). Comparison of waterfall and prototyping models in research and development (R&D) methods for android-based learning application design. Jurnal Inovatif: Inovasi Teknologi Informasi Dan Informatika 5(1): 36–39. doi: 10.32832/inova-tif.v5i1.7927
Rahmawati A, Garad A (2023). Managerial ownership, leverage, dividend policy, free cash flow, firm value: Evidence in Indonesia stock exchange. European Journal of Studies in Management and Business 25: 32–44. doi: 10.32038/mbrq.2023.25.03
Ramyakim RM, Widyasari A (2022). Age demographics of shareholders investors per sector (up to March 2022) (Indonesian). Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiFsPnQ-7r_AhUTwTgGHbCPC8MQFnoECCAQAQ&url=https%3A%2F%2Fwww.ksei.co.id%2Ffiles%2Fuploads%2Fpress_releases%2Fpress_file%2Fid-id%2F205_berita_pers_saham_industri_keuangan_menjadi_incaran_investor_gen_z_20220420142705.pdf&usg=AOvVaw1wUq-2cdRxSSCmCIZwp6U8 (accessed on 11 June 2023).
Siami-Namini S, Tavakoli N, Namin AS (2018) A comparison of ARIMA and LSTM in Forecasting Time Series. In: Proceeding of the 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA); IEEE; pp. 1394–1401 2018.
Smagulova K, James AP (2019). A survey on LSTM memristive neural network architectures and applications. The European Physical Journal Special Topics 228(10): 2313–2324. doi: 10.1140/EPJST/E2019-900046-X.
Statistik Pasar Modal Indonesia (2023). Available onlnine: www.ksei.co.id (accessed on 23 August 2023).
Untoro AB (2021). Stock price prediction using artificial neural networks (Indonesian). Jurnal Teknologi Informatika dan Komputer 6(2): 103–111. doi: 10.37012/jtik.v6i2.212.
Van Houdt G, Mosquera C, Nápoles G (2020). A review on the Long Short-Term memory model. Artificial Intelligence Review 53(8): 5929–5955. doi: 10.1007/s10462-020-09838-1
Xia K, Huang J, Wang H (2020). LSTM-CNN architecture for human activity recognition. IEEE Access 8: 56855–56866. doi: 10.1109/ACCESS.2020.2982225
Yahoo finance-stock market live, quotes, business & finance news. Available online: https://finance.yahoo.com/ (accessed on 23 August 2023).
DOI: https://doi.org/10.24294/jipd.v7i3.2631
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Kefas Bagastio, Raymond Sunardi Oetama, Arief Ramadhan
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This site is licensed under a Creative Commons Attribution 4.0 International License.