References
Adadi, A., & Berrada, M. (2018). Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI). IEEE Access, 6, 52138–52160. https://doi.org/10.1109/ACCESS.2018.2870052
Ahmad, I., Ahmed, G., Shah, S. A. A., & Ahmed, E. (2020). A decade of big data literature: analysis of trends in light of bibliometrics. The Journal of Supercomputing, 76(5), 3555–3571. https://doi.org/10.1007/s11227-018-2714-x
Ahmad, S. T., Watrianthos, R., Samala, A. D., Muskhir, M., & Dogara, G. (2023). Project-based Learning in Vocational Education: A Bibliometric Approach. International Journal Modern Education and Computer Science, 15(4), 43–56. https://doi.org/10.5815/ijmecs.2023.04.04
Albu, A., Enescu, A., & Malagò, L. (2020). Tumor Detection in Brain MRIs by Computing Dissimilarities in the Latent Space of a Variational AutoEncoder. Proceedings of the Northern Lights Deep Learning Workshop, 1, 6. https://doi.org/10.7557/18.5172
Antonov, A., & Kerikmäe, T. (2020). Trustworthy AI as a Future Driver for Competitiveness and Social Change in the EU. In The EU in the 21st Century (pp. 135–154). Springer International Publishing. https://doi.org/10.1007/978-3-030-38399-2_9
Arees, Z. A. (2022). The Social Impact of Artificial Intelligence. In Encyclopedia of Data Science and Machine Learning (pp. 834–847). IGI Global. https://doi.org/10.4018/978-1-7998-9220-5.ch048
Aria, M., & Cuccurullo, C. (2017). bibliometrix : An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975. https://doi.org/10.1016/j.joi.2017.08.007
Borgohain, D. J., Bhardwaj, R. K., & Verma, M. K. (2022). Mapping the literature on the application of artificial intelligence in libraries (AAIL): a scientometric analysis. Library Hi Tech. https://doi.org/10.1108/LHT-07-2022-0331
Burnham, J. F. (2006). Scopus database: A review. In Biomedical Digital Libraries (Vol. 3). https://doi.org/10.1186/1742-5581-3-1
Caesar, H., Bankiti, V., Lang, A. H., Vora, S., Liong, V. E., Xu, Q., Krishnan, A., Pan, Y., Baldan, G., & Beijbom, O. (2020). nuScenes: A Multimodal Dataset for Autonomous Driving. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 11618–11628. https://doi.org/10.1109/CVPR42600.2020.01164
Choi, J., Shin, K., Jung, J., Bae, H.-J., Kim, D. H., Byeon, J.-S., & Kim, N. (2020). Convolutional Neural Network Technology in Endoscopic Imaging: Artificial Intelligence for Endoscopy. Clinical Endoscopy, 53(2), 117–126. https://doi.org/10.5946/ce.2020.054
Feng, D., Haase-Schutz, C., Rosenbaum, L., Hertlein, H., Glaser, C., Timm, F., Wiesbeck, W., & Dietmayer, K. (2021). Deep Multi-Modal Object Detection and Semantic Segmentation for Autonomous Driving: Datasets, Methods, and Challenges. IEEE Transactions on Intelligent Transportation Systems, 22(3), 1341–1360. https://doi.org/10.1109/TITS.2020.2972974
Gao, A. (2022). National Strategy for the development of Artificial Intelligence In the context of the global digital economy. Artificial Societies, 17(2), 0. https://doi.org/10.18254/S207751800020634-6
Gao, H., Cheng, B., Wang, J., Li, K., Zhao, J., & Li, D. (2018). Object Classification Using CNN-Based Fusion of Vision and LIDAR in Autonomous Vehicle Environment. IEEE Transactions on Industrial Informatics, 14(9), 4224–4231. https://doi.org/10.1109/TII.2018.2822828
Gorraiz, J. I. (2021). Editorial: Best Practices in Bibliometrics & Bibliometric Services. Frontiers in Research Metrics and Analytics, 6. https://doi.org/10.3389/frma.2021.771999
Kim, J., & Park, N. (2020). Blockchain-Based Data-Preserving AI Learning Environment Model for AI Cybersecurity Systems in IoT Service Environments. Applied Sciences, 10(14), 4718. https://doi.org/10.3390/app10144718
Matheny, M., Thadaney, I. S., Ahmed, M., Whicher, D. (2019). Artificial Intelligence in Health Care: The Hope, the Hype, the Promise, the Peril. NAM Special Publication. National Academy of Medicine.
Mshvidobadze, T. (2021). Python for Automating Machine Learning Tasks. JINAV: Journal of Information and Visualization, 2(2), 77–82. https://doi.org/10.35877/454RI.jinav373
Mustapa, M. (2023). Implementation of Feature Selection and Data Split using Brute Force to Improve Accuracy. Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, 14(1), 50–59. https://doi.org/10.58346/JOWUA.2023.I1.004
Nath, S., Marie, A., Ellershaw, S., Korot, E., & Keane, P. A. (2022). New meaning for NLP: the trials and tribulations of natural language processing with GPT-3 in ophthalmology. British Journal of Ophthalmology, 106(7), 889–892. https://doi.org/10.1136/bjophthalmol-2022-321141
Negahdary, M., Jafarzadeh, M., Rahimi, G., Naziri, M., & Negahdary, A. (2018). The Modified h-Index of Scopus: A New Way in Fair Scientometrics. Publishing Research Quarterly, 34(3). https://doi.org/10.1007/s12109-018-9587-y
Ninkov, A., Frank, J. R., & Maggio, L. A. (2022). Bibliometrics: Methods for studying academic publishing. Perspectives on Medical Education, 11(3). https://doi.org/10.1007/s40037-021-00695-4
Ronal Watrianthos, & Yuhefizar, Y. (2023). Exploring Research Trends and Impact: A Bibliometric Analysis of RESTI Journal from 2018 to 2022. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 7(4), 970–981. https://doi.org/10.29207/resti.v7i4.5101
Sabeel, U., Heydari, S. S., Elgazzar, K., & El-Khatib, K. (2021). Building an Intrusion Detection System to Detect Atypical Cyberattack Flows. IEEE Access, 9, 94352–94370. https://doi.org/10.1109/ACCESS.2021.3093830
Samala, A. D., Bojic, L., Bekiroğlu, D., Watrianthos, R., & Hendriyani, Y. (2023). Microlearning: Transforming Education with Bite-Sized Learning on the Go—Insights and Applications. International Journal of Interactive Mobile Technologies (IJIM), 17(21), 4–24. https://doi.org/10.3991/ijim.v17i21.42951
Sarvamangala, D. R., & Kulkarni, R. V. (2022). Convolutional neural networks in medical image understanding: a survey. Evolutionary Intelligence, 15(1), 1–22. https://doi.org/10.1007/s12065-020-00540-3
Sharif, N., Nadeem, U., Shah, S. A. A., Bennamoun, M., & Liu, W. (2020). Vision to Language: Methods, Metrics and Datasets (pp. 9–62). https://doi.org/10.1007/978-3-030-49724-8_2
Sundaresan, N. (2019). From Code to Data. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 3175–3175. https://doi.org/10.1145/3292500.3340410
Supriadi, M., Jondri, J., and, I. I.-J. J. of I., & 2023, undefined. (2023). Retweet Prediction Using Artificial Neural Network Method Optimized with Firefly Algorithm. Sainsmat.OrgMR Supriadi, J Jondri, I IndwiartiJINAV: Journal of Information and Visualization, 2023 sainsmat. Org, 4(2), 2746–1440. https://sainsmat.org/index.php/jinav/article/view/1903
Tran, B. X., McIntyre, R. S., Latkin, C. A., Phan, H. T., Vu, G. T., Nguyen, H. L. T., Gwee, K. K., Ho, C. S. H., & Ho, R. C. M. (2019). The Current Research Landscape on the Artificial Intelligence Application in the Management of Depressive Disorders: A Bibliometric Analysis. International Journal of Environmental Research and Public Health, 16(12), 2150. https://doi.org/10.3390/ijerph16122150
Watrianthos, R., Triono Ahmad, S., & Muskhir, M. (2023). Charting the Growth and Structure of Early ChatGPT-Education Research: A Bibliometric Study. Journal of Information Technology Education: Innovations in Practice, 22, 235–253. https://doi.org/10.28945/5221
Whittlestone, J., & Clarke, S. (2022). AI Challenges for Society and Ethics. In The Oxford Handbook of AI Governance. Oxford University Press. https://doi.org/10.1093/oxfordhb/9780197579329.013.3
Wijethunga, R. L. M. A. P. C., Matheesha, D. M. K., Noman, A. Al, De Silva, K. H. V. T. A., Tissera, M., & Rupasinghe, L. (2020). Deepfake Audio Detection: A Deep Learning Based Solution for Group Conversations. 2020 2nd International Conference on Advancements in Computing (ICAC), 192–197. https://doi.org/10.1109/ICAC51239.2020.9357161
Windarto, A. P., Wanto, A., Solikhun, S., & Watrianthos, R. (2023). A Comprehensive Bibliometric Analysis of Deep Learning Techniques for Breast Cancer Segmentation: Trends and Topic Exploration (2019-2023). Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 7(5), 1155–1164. https://doi.org/10.29207/resti.v7i5.5274