Table of Contents
by
Vasudev D. Shinde, Suyog B. Rayjadhav
Therm. Sci. Eng.
2018
,
1(3);
676 Views
Abstract
In recent years, the foundry sector has been showing an increased interest in reclamation of used sands. Grain shape, sieve analysis, chemical and thermal characteristics must be uniform while molding the sand for better casting characteristics. The problem that tackled by every foundry industry is that of processing an adequate supply of sand which has the properties to meet many requirements imposed upon while molding and core making. Recently, fluidized bed combustors are becoming core of ‘clean wastes technology’ due to their efficient and clean burning of sand. For proven energy efficient sand reclamation processing, analysis of heating system in fluidized bed combustor (FBC) is required. The objective of current study is to design heating element and analysis of heating system by calculation of heat losses and thermal analysis offluidized bed combustorfor improving efficiency.
show more
by
Atul Kumar, Srivastava Manish
Therm. Sci. Eng.
2018
,
1(3);
665 Views
Abstract
Electricity generation around the world is mainly produced by using non-renewable energy sources especially in the commercial buildings. However, Rooftop solar Photovoltaic (PV) system produced a significant impact on environmental and economical benefits in comparison to the conventional energy sources, thus contributing to sustainable development. Such PV’s system encourages the production of electricity without greenhouse gas emissions that leads to a clean alternative to fossil fuels and economic prosperity even in less developed areas. However, efficiency of rooftop solar PV systems depends on many factors, the dominant being geographical (latitude, longitude, and solar intensity), environmental (temperature, wind, humidity, pollution, dust, rain, etc.) and the type of PV (from raw material extraction and procurement, to manufacturing, disposal, and/or recycling) used. During the feasibility analysis of the environment, geographical conditions are keep in well consideration, but the pollution level of the city is always overlooked, which significantly influences the performance of the PV installations. Therefore, this research work focused on the performance of rooftop solar PV installed in one of the most polluted city in India. Here, the loss in power generation of rooftop solar PV has been studied for the effect of deposited dust particles, wind velocity before and after the cleaning of the panels. The actual data has been utilized for the calculation of the energy efficiency and power output of the PV systems. According to the results, it has been concluded that dust deposition, wind speed and pollution level in city significantly reduces the efficiency of solar photovoltaic panel. Hence, an overview of social and environmental impacts of PV technologies is presented in this paper along with potential benefits and pitfalls.
show more