Flow Boiling of Refrigerants and Nanofluids in Mini and Microchannels: A Review

Asif Khan, Babar hayat, Muddassir Ali, Imran Sajid, Adil oya, Abdullah zafar

Article ID: 9926
Vol 8, Issue 4, 2025

VIEWS - 6 (Abstract)

Abstract


The two-phase flow in micro/mini channels is of fundamental importance for many interesting applications, such as cooling of micro-electronic components and devices by a compact heat exchanger, material processing and thin-film deposition technology, bioengineering, and biotechnology. This article discusses significant developments made in the past ten years by researchers in the fields of pool boiling and convective boiling, using water, nanofluids, and refrigerants as the working fluids. The literature's data is examined in terms of improvements and declines in the critical heat flow and nucleate boiling heat transfer.Conflicting data have been presented in the literature on the effect that nanofluids/refrigerants have on the boiling heat-transfer coefficient; however, almost all the researchers have noted an enhancement in the critical heat flux during nanofluid/refrigerant boiling. Several researchers have observed nanoparticle deposition at the heater surface, which they have related to the critical heat flux enhancement

Keywords


Two-Phase Flow, Pool Boiling, Convective Boiling, Nanofluids, Heat-Transfer Coefficient, Critical heat flux



References

  1. Smakulski, P.; Pietrowicz, S.A review of the capabilities of high heat flux removal by porous materials, microchannels and spray cooling techniques Applied Thermal Engineering 2016, 104, 636-646.
  2. Chai, L.; Xia, G.; Zhou, M.; Li, J.; Qi, J.Optimum thermal design of interrupted microchannel heat sink with rectangular ribs in the transverse microchambers Applied Thermal Engineering 2013, 51, 880-889.
  3. Tuckerman, D. B.; Pease, R.High-performance heat sinking for VLSI IEEE Electron device letters 1981, 2, 126-129.
  4. Chol, S.Enhancing thermal conductivity of fluids with nanoparticles ASME-Publications-Fed 1995, 231, 99-106.
  5. Eastman, J. A.; Choi, S.; Li, S.; Yu, W.; Thompson, L.Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles Applied physics letters 2001, 78, 718-720.
  6. Loya, A. N., A.; Aziz, F.; Khan, A.; Ren, G.; Luo, K.Comparative molecular dynamics simulations of thermal conductivities of aqueous and hydrocarbon nanofluids Beilstein J. Nanotechnol. 2022, 13, 620–628.
  7. You, S.; Kim, J.; Kim, K.Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer Applied Physics Letters 2003, 83, 3374-3376.
  8. Loya, A.; Ren, G.Molecular dynamics simulation study of rheological properties of CuO–water nanofluid Journal of Materials Science 2015, 50, 4075-4082.
  9. Loya, A.; Stair, J. L.; Ren, G.Simulation and experimental study of rheological properties of CeO 2–water nanofluid International Nano Letters 2015, 5, 1-7.
  10. Ali, R.; Palm, B.; Maqbool, M. H.Flow boiling heat transfer characteristics of a minichannel up to dryout condition Journal of heat transfer 2011, 133, 081501.
  11. Ali, R.; Palm, B.Dryout characteristics during flow boiling of R134a in vertical circular minichannels International Journal of Heat and Mass Transfer 2011, 54, 2434-2445.
  12. Arima, H.; Kim, J.; Okamoto, A.; Ikegami, Y.Local boiling heat transfer characteristics of ammonia in a vertical plate evaporator International Journal of Refrigeration 2010, 33, 359-370.
  13. Bao, Z.; Fletcher, D.; Haynes, B.Flow boiling heat transfer of Freon R11 and HCFC123 in narrow passages International Journal of Heat and Mass Transfer 2000, 43, 3347-3358.
  14. Bowers, M.; Mudawar, I.High flux boiling in low flow rate, low pressure drop mini-channel and micro-channel heat sinks International Journal of Heat and Mass Transfer 1994, 37, 321-332.
  15. Cavallini, A.; Del Col, D.; Doretti, L.; Matkovic, M.; Rossetto, L.; Zilio, C.Two-phase frictional pressure gradient of R236ea, R134a and R410A inside multi-port mini-channels Experimental Thermal and Fluid Science 2005, 29, 861-870.
  16. Celata, G. P.; Cumo, M.; Mariani, A.Geometrical effects on the subcooled flow boiling critical heat flux Revue générale de thermique 1997, 36, 807-814.
  17. Chang, S.-D.; Ro, S.Pressure drop of pure HFC refrigerants and their mixtures flowing in capillary tubes International journal of multiphase flow 1996, 22, 551-561.
  18. Choi, K.-I.; Pamitran, A.; Oh, C.-Y.; Oh, J.-T.Boiling heat transfer of R-22, R-134a, and CO 2 in horizontal smooth minichannels International Journal of Refrigeration 2007, 30, 1336-1346.
  19. Choi, K.-I.; Pamitran, A.; Oh, J.-T.; Saito, K.Pressure drop and heat transfer during two-phase flow vaporization of propane in horizontal smooth minichannels International Journal of Refrigeration 2009, 32, 837-845.
  20. Fukano, T.; Kariyasaki, A.Characteristics of gas-liquid two-phase flow in a capillary tube Nuclear Engineering and Design 1993, 141, 59-68.
  21. Huo, X.; Chen, L.; Tian, Y.; Karayiannis, T.Flow boiling and flow regimes in small diameter tubes Applied Thermal Engineering 2004, 24, 1225-1239.
  22. In, S.; Jeong, S.Flow boiling heat transfer characteristics of R123 and R134a in a micro-channel International Journal of Multiphase Flow 2009, 35, 987-1000.
  23. Kabelac, S.; De Buhr, H.-J.Flow boiling of ammonia in a plain and a low finned horizontal tube International journal of refrigeration 2001, 24, 41-50.
  24. Kawahara, A.; Chung, P.-Y.; Kawaji, M.Investigation of two-phase flow pattern, void fraction and pressure drop in a microchannel International Journal of Multiphase Flow 2002, 28, 1411-1435.
  25. Zhao, Y.; Molki, M.; Ohadi, M. M.; Dessiatoun, S.Flow boiling of CO (2) in microchannels Ashrae Transactions 2000, 106, 437.
  26. Zhang, M.; Webb, R. L.Correlation of two-phase friction for refrigerants in small-diameter tubes Experimental Thermal and Fluid Science 2001, 25, 131-139.
  27. Wojtan, L.; Revellin, R.; Thome, J. R.Investigation of saturated critical heat flux in a single, uniformly heated microchannel Experimental Thermal and Fluid Science 2006, 30, 765-774.
  28. France, D.; Jendrzejczyk, J.; Iran, T.Boiling heat transfer in a horizontal small-diameter tube Journal of Heat Transfer 1993, 115, 963.
  29. Tran, T.; Wambsganss, M.; France, D.Small circular-and rectangular-channel boiling with two refrigerants International Journal of Multiphase Flow 1996, 22, 485-498.
  30. Teyssedou, A.; Olekhnowitch, A.; Tapucu, A.; Champagne, P.; Groeneveld, D.Critical heat flux data in a vertical tube at low and medium pressures Nuclear engineering and design 1994, 149, 185-194.
  31. Sumith, B.; Kaminaga, F.; Matsumura, K.Saturated flow boiling of water in a vertical small diameter tube Experimental Thermal and Fluid Science 2003, 27, 789-801.
  32. Khir, T.; Jassim, R. K.; Ghaffour, N.; Brahim, A. B.EXPERIMENTAL STUDY ON FORCED CONVECTIVE BOILING OF AMMONIA-WATER MIXTURES IN A VERTICAL SMOOTH TUBE Arabian Journal for Science & Engineering (Springer Science & Business Media BV) 2005, 30.
  33. Hetsroni, G.; Mosyak, A.; Pogrebnyak, E.; Sher, I.; Segal, Z.Bubble growth in saturated pool boiling in water and surfactant solution International Journal of Multiphase Flow 2006, 32, 159-182.
  34. Madrid, F.; Caney, N.; Marty, P.Study of a vertical boiling flow in rectangular mini-channels Heat Transfer Engineering 2007, 28, 753-760.
  35. Koşar, A.; Peles, Y.Critical heat flux of R-123 in silicon-based microchannels Journal of Heat Transfer 2007, 129, 844-851.
  36. Kew, P. A.; Cornwell, K.Correlations for the prediction of boiling heat transfer in small-diameter channels Applied Thermal Engineering 1997, 17, 705-715.
  37. Lazarek, G.; Black, S.Evaporative heat transfer, pressure drop and critical heat flux in a small vertical tube with R-113 International Journal of Heat and Mass Transfer 1982, 25, 945-960.
  38. Mastrullo, R.; Mauro, A. W.; Rosato, A.; Vanoli, G. P.Carbon dioxide local heat transfer coefficients during flow boiling in a horizontal circular smooth tube International Journal of Heat and Mass Transfer 2009, 52, 4184-4194.
  39. Qu, W.; Mudawar, I.Measurement and correlation of critical heat flux in two-phase micro-channel heat sinks International Journal of Heat and Mass Transfer 2004, 47, 2045-2059.
  40. Qi, S.; Zhang, P.; Wang, R.; Xu, L.Flow boiling of liquid nitrogen in micro-tubes: Part II–Heat transfer characteristics and critical heat flux International journal of heat and mass transfer 2007, 50, 5017-5030.
  41. Pamitran, A.; Choi, K.-I.; Oh, J.-T.Evaporation heat transfer coefficient in single circular small tubes for flow natural refrigerants of C 3 H 8, NH 3, and CO 2 International Journal of Multiphase Flow 2011, 37, 794-801.
  42. Owhaib, W.; Martı́n-Callizo, C.; Palm, B.Evaporative heat transfer in vertical circular microchannels Applied Thermal Engineering 2004, 24, 1241-1253.
  43. Lee, P.-S.; Garimella, S. V.; Liu, D.Investigation of heat transfer in rectangular microchannels International Journal of Heat and Mass Transfer 2005, 48, 1688-1704.
  44. Sobierska, E.; Kulenovic, R.; Mertz, R.; Groll, M.Experimental results of flow boiling of water in a vertical microchannel Experimental Thermal and Fluid Science 2006, 31, 111-119.
  45. Saitoh, S.; Daiguji, H.; Hihara, E.Effect of tube diameter on boiling heat transfer of R-134a in horizontal small-diameter tubes International Journal of Heat and Mass Transfer 2005, 48, 4973-4984.
  46. Saisorn, S.; Kaew-On, J.; Wongwises, S.Flow pattern and heat transfer characteristics of R-134a refrigerant during flow boiling in a horizontal circular mini-channel International Journal of Heat and Mass Transfer 2010, 53, 4023-4038.
  47. Kuang, Y.; Wang, W.; Miao, J.; Yu, X.; Zhang, H.; Zhuan, R.Flow boiling of ammonia and flow instabilities in mini-channels Applied Thermal Engineering 2017, 113, 831-842.
  48. Bowers, M. B.; Mudawar, I.Two-phase electronic cooling using mini-channel and micro-channel heat sinks: Part 2—Flow rate and pressure drop constraints Journal of Electronic Packaging 1994, 116, 298-305.
  49. Ong, C.; Thome, J.Macro-to-microchannel transition in two-phase flow: Part 2–Flow boiling heat transfer and critical heat flux Experimental thermal and fluid science 2011, 35, 873-886.
  50. Yu, W.; France, D.; Wambsganss, M.; Hull, J.Two-phase pressure drop, boiling heat transfer, and critical heat flux to water in a small-diameter horizontal tube International Journal of Multiphase Flow 2002, 28, 927-941.
  51. Wen, M.-Y.; Ho, C.-Y.Evaporation heat transfer and pressure drop characteristics of R-290 (propane), R-600 (butane), and a mixture of R-290/R-600 in the three-lines serpentine small-tube bank Applied thermal engineering 2005, 25, 2921-2936.
  52. Wen, D.; Kenning, D.Two-phase pressure drop of water during flow boiling in a vertical narrow channel Experimental thermal and Fluid science 2004, 28, 131-138.
  53. Triplett, K.; Ghiaasiaan, S.; Abdel-Khalik, S.; Sadowski, D.Gas–liquid two-phase flow in microchannels Part I: two-phase flow patterns International Journal of Multiphase Flow 1999, 25, 377-394.
  54. Tran, T.; Chyu, M.-C.; Wambsganss, M.; France, D.Two-phase pressure drop of refrigerants during flow boiling in small channels: an experimental investigation and correlation development International Journal of Multiphase Flow 2000, 26, 1739-1754.
  55. Megahed, A.; Hassan, I.Two-phase pressure drop and flow visualization of FC-72 in a silicon microchannel heat sink International Journal of Heat and Fluid Flow 2009, 30, 1171-1182.
  56. Lin, S.; Kew, P.; Cornwell, K.Two-phase heat transfer to a refrigerant in a 1 mm diameter tube International Journal of Refrigeration 2001, 24, 51-56.
  57. Qu, W.; Mudawar, I.Measurement and prediction of pressure drop in two-phase micro-channel heat sinks International Journal of Heat and Mass Transfer 2003, 46, 2737-2753.
  58. Pamitran, A.; Choi, K.-I.; Oh, J.-T.; Oh, H.-K.Two-phase pressure drop during CO 2 vaporization in horizontal smooth minichannels international journal of refrigeration 2008, 31, 1375-1383.
  59. Ong, C. L.; Thome, J.Macro-to-microchannel transition in two-phase flow: Part 1–Two-phase flow patterns and film thickness measurements Experimental Thermal and Fluid Science 2011, 35, 37-47.
  60. Revellin, R.; Thome, J. R.Adiabatic two-phase frictional pressure drops in microchannels Experimental Thermal and Fluid Science 2007, 31, 673-685.
  61. Strąk, K.; Piasecka, M.; Maciejewska, B.EFFECT OF SPATIAL ORIENTATION OF AN ENHANCED SURFACE MINICHANNEL ON FLOW BOILING HEAT TRANSFER OF COOLING LIQUIDS.
  62. Falsetti, C.; Jafarpoorchekab, H.; Magnini, M.; Borhani, N.; Thome, J.Two-phase operational maps, pressure drop, and heat transfer for flow boiling of R236fa in a micro-pin fin evaporator International Journal of Heat and Mass Transfer 2017, 107, 805-819.
  63. Lee, J.; Mudawar, I.Two-phase flow in high-heat-flux micro-channel heat sink for refrigeration cooling applications: Part I––pressure drop characteristics International Journal of Heat and Mass Transfer 2005, 48, 928-940.
  64. Two-phase flow in high-heat-flux micro-channel heat sink for refrigeration cooling applications: Part II—heat transfer characteristics International Journal of Heat and Mass Transfer 2005, 48, 941-955.
  65. Li, W.; Wu, Z.A general correlation for evaporative heat transfer in micro/mini-channels International Journal of Heat and Mass Transfer 2010, 53, 1778-1787.
  66. Shah, M. M.Improved general correlation for critical heat flux during upflow in uniformly heated vertical tubes International Journal of Heat and Fluid Flow 1987, 8, 326-335.
  67. Stephan, K.; Abdelsalam, M.Heat-transfer correlations for natural convection boiling International Journal of Heat and Mass Transfer 1980, 23, 73-87.
  68. Müller-Steinhagen, H.; Heck, K.A simple friction pressure drop correlation for two-phase flow in pipes Chemical Engineering and Processing: Process Intensification 1986, 20, 297-308.
  69. Mishima, K.; Hibiki, T.Some characteristics of air-water two-phase flow in small diameter vertical tubes International journal of multiphase flow 1996, 22, 703-712.
  70. Liu, Z.; Winterton, R.A general correlation for saturated and subcooled flow boiling in tubes and annuli, based on a nucleate pool boiling equation International journal of heat and mass transfer 1991, 34, 2759-2766.
  71. Vlasie, C.; Macchi, H.; Guilpart, J.; Agostini, B.Flow boiling in small diameter channels International Journal of Refrigeration 2004, 27, 191-201.
  72. Quibén, J. M.; Thome, J. R.Flow pattern based two-phase frictional pressure drop model for horizontal tubes, Part II: New phenomenological model International Journal of Heat and Fluid Flow 2007, 28, 1060-1072.
  73. Tribbe, C.; Müller-Steinhagen, H.An evaluation of the performance of phenomenological models for predicting pressure gradient during gas–liquid flow in horizontal pipelines International Journal of Multiphase Flow 2000, 26, 1019-1036.
  74. Chen, W.; Twu, M.; Pan, C.Gas–liquid two-phase flow in micro-channels International Journal of Multiphase Flow 2002, 28, 1235-1247.
  75. Abdollahi, A.; Sharma, R. N.; Vatani, A.Fluid flow and heat transfer of liquid-liquid two phase flow in microchannels: A review International Communications in Heat and Mass Transfer 2017, 84, 66-74.
  76. Qu, W.; Mudawar, I.Flow boiling heat transfer in two-phase micro-channel heat sinks––II. Annular two-phase flow model International Journal of Heat and Mass Transfer 2003, 46, 2773-2784.
  77. Singh, P. K.; Harikrishna, P.; Sundararajan, T.; Das, S. K.Experimental and numerical investigation into the hydrodynamics of nanofluids in microchannels Experimental Thermal and Fluid Science 2012, 42, 174-186.
  78. Ahn, H. S.; Kim, H.; Jo, H.; Kang, S.; Chang, W.; Kim, M. H.Experimental study of critical heat flux enhancement during forced convective flow boiling of nanofluid on a short heated surface International Journal of Multiphase Flow 2010, 36, 375-384.
  79. Boudouh, M.; Gualous, H. L.; De Labachelerie, M.Local convective boiling heat transfer and pressure drop of nanofluid in narrow rectangular channels Applied Thermal Engineering 2010, 30, 2619-2631.
  80. Chehade, A. A.; Gualous, H. L.; Le Masson, S.; Fardoun, F.; Besq, A.Boiling local heat transfer enhancement in minichannels using nanofluids Nanoscale research letters 2013, 8, 130.
  81. Lee, S.-W.; Park, S.-D.; Kang, S.-R.; Kim, S.-M.; Seo, H.; Lee, D.-W.; Bang, I.-C.Critical heat flux enhancement in flow boiling of Al 2 O 3 and SiC nanofluids under low pressure and low flow conditions Nuclear Engineering and Technology 2012, 44, 429-436.
  82. Kim, S. J.; McKrell, T.; Buongiorno, J.; Hu, L.-w.Subcooled flow boiling heat transfer of dilute alumina, zinc oxide, and diamond nanofluids at atmospheric pressure Nuclear Engineering and Design 2010, 240, 1186-1194.
  83. Morshed, A.; Yang, F.; Ali, M. Y.; Khan, J. A.; Li, C.Enhanced flow boiling in a microchannel with integration of nanowires Applied Thermal Engineering 2012, 32, 68-75.
  84. Rana, K.; Agrawal, G.; Mathur, J.; Puli, U.Measurement of void fraction in flow boiling of ZnO–water nanofluids using image processing technique Nuclear Engineering and Design 2014, 270, 217-226.
  85. Tullius, J.; Bayazitoglu, Y.Effect of Al 2 O 3/H 2 O nanofluid on MWNT circular fin structures in a minichannel International Journal of Heat and Mass Transfer 2013, 60, 523-530.
  86. Wen, D.; Ding, Y.Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions International journal of heat and mass transfer 2004, 47, 5181-5188.
  87. Putra, N.; Thiesen, P.; Roetzel, W.Temperature dependence of thermal conductivity enhancement for nanofluids Journal of heat transfer 2003, 125, 567-574.
  88. Piasecka, M.Heat transfer research on enhanced heating surfaces in flow boiling in a minichannel and pool boiling Annals of Nuclear Energy 2014, 73, 282-293.
  89. Vafaei, S.; Wen, D.Critical heat flux (CHF) of subcooled flow boiling of alumina nanofluids in a horizontal microchannel Journal of Heat Transfer 2010, 132, 102404.
  90. Heris, S. Z.Experimental investigation of pool boiling characteristics of low-concentrated CuO/ethylene glycol–water nanofluids International Communications in Heat and Mass Transfer 2011, 38, 1470-1473.
  91. Bang, I. C.; Chang, S. H.Boiling heat transfer performance and phenomena of Al 2 O 3–water nano-fluids from a plain surface in a pool International Journal of Heat and Mass Transfer 2005, 48, 2407-2419.
  92. Bobbo, S.; Fedele, L.; Fabrizio, M.; Barison, S.; Battiston, S.; Pagura, C.Influence of nanoparticles dispersion in POE oils on lubricity and R134a solubility International journal of refrigeration 2010, 33, 1180-1186.
  93. Chen, L. C., Tingkuan.Comparison of six typical correlations for upward flow boiling heat transfer with kerosene in a vertical smooth tube Heat transfer engineering 2000, 21, 27-34.
  94. Study of flow boiling heat transfer in a tube with axial microgrooves Experimental heat transfer 2001, 14, 59-73.
  95. Cheng, L.; Ribatski, G.; Wojtan, L.; Thome, J. R.New flow boiling heat transfer model and flow pattern map for carbon dioxide evaporating inside horizontal tubes International journal of heat and mass transfer 2006, 49, 4082-4094.
  96. Cheng, L.; Chen, T.Enhanced heat transfer characteristics of upward flow boiling of kerosene in a vertical spirally internally ribbed tube Chemical engineering & technology 2006, 29, 1233-1241.
  97. Das, S. K.; Putra, N.; Roetzel, W.Pool boiling characteristics of nano-fluids International journal of heat and mass transfer 2003, 46, 851-862.
  98. Henderson, K.; Park, Y.-G.; Liu, L.; Jacobi, A. M.Flow-boiling heat transfer of R-134a-based nanofluids in a horizontal tube International Journal of Heat and Mass Transfer 2010, 53, 944-951.
  99. Kole, M.; Dey, T.Investigations on the pool boiling heat transfer and critical heat flux of ZnO-ethylene glycol nanofluids Applied Thermal Engineering 2012, 37, 112-119.
  100. Kedzierski, M. A.Effect of Al 2 O 3 nanolubricant on R134a pool boiling heat transfer international journal of refrigeration 2011, 34, 498-508.
  101. Park, K.-J.; Jung, D.Boiling heat transfer enhancement with carbon nanotubes for refrigerants used in building air-conditioning Energy and Buildings 2007, 39, 1061-1064.
  102. Park, K.-J.; Jung, D.; Shim, S. E.Nucleate boiling heat transfer in aqueous solutions with carbon nanotubes up to critical heat fluxes International Journal of Multiphase Flow 2009, 35, 525-532.
  103. Peng, H.; Ding, G.; Hu, H.Effect of surfactant additives on nucleate pool boiling heat transfer of refrigerant-based nanofluid Experimental Thermal and Fluid Science 2011, 35, 960-970.
  104. Trisaksri, V.; Wongwises, S.Nucleate pool boiling heat transfer of TiO 2–R141b nanofluids International Journal of Heat and Mass Transfer 2009, 52, 1582-1588.
  105. Peng, H.; Ding, G.; Hu, H.; Jiang, W.; Zhuang, D.; Wang, K.Nucleate pool boiling heat transfer characteristics of refrigerant/oil mixture with diamond nanoparticles International Journal of refrigeration 2010, 33, 347-358.
  106. Peng, H.; Ding, G.; Jiang, W.; Hu, H.; Gao, Y.Heat transfer characteristics of refrigerant-based nanofluid flow boiling inside a horizontal smooth tube International Journal of Refrigeration 2009, 32, 1259-1270.
  107. Wen, D.; Ding, Y.Experimental investigation into the pool boiling heat transfer of aqueous based γ-alumina nanofluids Journal of Nanoparticle Research 2005, 7, 265-274.
  108. ASME 5th International Conference on Nanochannels, Microchannels and Minichannels, 2007.
  109. Ding, G.; Peng, H.; Jiang, W.; Gao, Y.The migration characteristics of nanoparticles in the pool boiling process of nanorefrigerant and nanorefrigerant–oil mixture International Journal of Refrigeration 2009, 32, 114-123.
  110. Huminic, G.; Huminic, A.Heat transfer characteristics of a two-phase closed thermosyphons using nanofluids Experimental Thermal and Fluid Science 2011, 35, 550-557.
  111. Soltani, S.; Etemad, S. G.; Thibault, J.Pool boiling heat transfer of non-Newtonian nanofluids International Communications in Heat and Mass Transfer 2010, 37, 29-33.
  112. Golubovic, M. N.; Hettiarachchi, H. M.; Worek, W.; Minkowycz, W.Nanofluids and critical heat flux, experimental and analytical study Applied Thermal Engineering 2009, 29, 1281-1288.
  113. Liu, Z.-h.; Liao, L.Sorption and agglutination phenomenon of nanofluids on a plain heating surface during pool boiling International Journal of Heat and Mass Transfer 2008, 51, 2593-2602.
  114. Milanova, D.; Kumar, R.Role of ions in pool boiling heat transfer of pure and silica nanofluids Applied Physics Letters 2005, 87, 233107.
  115. Vassallo, P.; Kumar, R.; D’Amico, S.Pool boiling heat transfer experiments in silica–water nano-fluids International Journal of Heat and Mass Transfer 2004, 47, 407-411.
  116. Kwark, S. M.; Kumar, R.; Moreno, G.; Yoo, J.; You, S. M.Pool boiling characteristics of low concentration nanofluids International Journal of Heat and Mass Transfer 2010, 53, 972-981.
  117. Naphon, P.; Assadamongkol, P.; Borirak, T.Experimental investigation of titanium nanofluids on the heat pipe thermal efficiency International Communications in Heat and Mass Transfer 2008, 35, 1316-1319.
  118. Hwang, Y.; Park, H.; Lee, J.; Jung, W.Thermal conductivity and lubrication characteristics of nanofluids Current Applied Physics 2006, 6, e67-e71.
  119. Ali, H. M.; Generous, M. M.; Ahmad, F.; Irfan, M.Experimental investigation of nucleate pool boiling heat transfer enhancement of TiO 2-water based nanofluids Applied Thermal Engineering 2017, 113, 1146-1151.
  120. Abdollahi, A.; Salimpour, M. R.; Etesami, N.Experimental analysis of magnetic field effect on the pool boiling heat transfer of a ferrofluid Applied Thermal Engineering 2017, 111, 1101-1110.
  121. Abedini, E.; Zarei, T.; Afrand, M.; Wongwises, S.Experimental study of transition flow from single phase to two phase flow boiling in nanofluids Journal of Molecular Liquids 2017, 231, 11-19.
  122. Afrand, M.; Abedini, E.; Teimouri, H.Experimental investigation and simulation of flow boiling of nanofluids in different flow directions Physica E: Low-dimensional Systems and Nanostructures 2017, 87, 248-253.
  123. Zhou, J.; Luo, X.; Feng, Z.; Xiao, J.; Zhang, J.; Guo, F.; Li, H.Saturated flow boiling heat transfer investigation for nanofluid in minichannel Experimental Thermal and Fluid Science 2017, 85, 189-200.
  124. Wang, Y.; Deng, K.; Liu, B.; Wu, J.; Su, G.A correlation of nanofluid flow boiling heat transfer based on the experimental results of AlN/H 2 O and Al 2 O 3/H 2 O nanofluid Experimental Thermal and Fluid Science 2017, 80, 376-383.
  125. Kang, Y. T.; Kim, H. J.; Lee, K. I.Heat and mass transfer enhancement of binary nanofluids for H 2 O/LiBr falling film absorption process International Journal of Refrigeration 2008, 31, 850-856.
  126. Huang, C.-Y.; Huang, B.-H.; Cheng, F.-R.; Chen, S.-W.; Liou, T.-M.Experimental study of heat transfer enhancement with segmented flow in a microchannel by using molecule-based temperature sensors International Journal of Heat and Mass Transfer 2017, 107, 657-666.
  127. Yu, L.; Sur, A.; Liu, D.Flow boiling heat transfer and two-phase flow instability of nanofluids in a minichannel Journal of Heat Transfer 2015, 137, 051502.
  128. Lee, J.; Mudawar, I.Assessment of the effectiveness of nanofluids for single-phase and two-phase heat transfer in micro-channels International Journal of Heat and Mass Transfer 2007, 50, 452-463.
  129. Cheng, L.; Thome, J. R.Cooling of microprocessors using flow boiling of CO 2 in a micro-evaporator: preliminary analysis and performance comparison Applied Thermal Engineering 2009, 29, 2426-2432.
  130. Quibén, J. M.; Cheng, L.; da Silva Lima, R. J.; Thome, J. R.Flow boiling in horizontal flattened tubes: Part I–Two-phase frictional pressure drop results and model International Journal of Heat and Mass Transfer 2009, 52, 3634-3644.
  131. Cheng, L.; Liu, L.Boiling and two-phase flow phenomena of refrigerant-based nanofluids: fundamentals, applications and challenges international journal of refrigeration 2013, 36, 421-446.
  132. Godson, L.; Raja, B.; Lal, D. M.; Wongwises, S.Enhancement of heat transfer using nanofluids—an overview Renewable and sustainable energy reviews 2010, 14, 629-641.
  133. Dominguez-Ontiveros, E.; Fortenberry, S.; Hassan, Y. A.Experimental observations of flow modifications in nanofluid boiling utilizing particle image velocimetry Nuclear Engineering and Design 2010, 240, 299-304.
  134. Wu, Z.; Sundén, B.On further enhancement of single-phase and flow boiling heat transfer in micro/minichannels Renewable and Sustainable Energy Reviews 2014, 40, 11-27.
  135. Wen, D.; Ding, Y.Effect of particle migration on heat transfer in suspensions of nanoparticles flowing through minichannels Microfluidics and Nanofluidics 2005, 1, 183-189.
  136. Bandarra Filho, E. P.; Cheng, L.; Thome, J. R.Flow boiling characteristics and flow pattern visualization of refrigerant/lubricant oil mixtures International journal of refrigeration 2009, 32, 185-202.
  137. Jang, S. P.; Choi, S. U.Effects of various parameters on nanofluid thermal conductivity Journal of heat transfer 2007, 129, 617-623.
  138. Cheng, L.; Mewes, D.Review of two-phase flow and flow boiling of mixtures in small and mini channels International Journal of Multiphase Flow 2006, 32, 183-207.
  139. Thome, J. R.Boiling in microchannels: a review of experiment and theory International Journal of Heat and Fluid Flow 2004, 25, 128-139.
  140. Barber, J.; Brutin, D.; Tadrist, L.A review on boiling heat transfer enhancement with nanofluids Nanoscale research letters 2011, 6, 280.
  141. Chopkar, M.; Das, A.; Manna, I.; Das, P.Pool boiling heat transfer characteristics of ZrO2–water nanofluids from a flat surface in a pool Heat and Mass Transfer 2008, 44, 999-1004.
  142. Taylor, R. A.; Phelan, P. E.Pool boiling of nanofluids: comprehensive review of existing data and limited new data International Journal of Heat and Mass Transfer 2009, 52, 5339-5347.
  143. Thome, J. R.Boiling of new refrigerants: a state-of-the-art review International Journal of Refrigeration 1996, 19, 435-457.
  144. Leong, K.; Ho, J.; Wong, K.A critical review of pool and flow boiling heat transfer of dielectric fluids on enhanced surfaces Applied Thermal Engineering 2017, 112, 999-1019.
  145. Karayiannis, T.; Mahmoud, M.Flow boiling in microchannels: Fundamentals and applications Applied Thermal Engineering 2017, 115, 1372-1397.
  146. Yang, L.; Du, K.A comprehensive review on heat transfer characteristics of TiO 2 nanofluids International Journal of Heat and Mass Transfer 2017, 108, 11-31.
  147. Končar, B.; Kljenak, I.; Mavko, B.Modelling of local two-phase flow parameters in upward subcooled flow boiling at low pressure International Journal of Heat and Mass Transfer 2004, 47, 1499-1513.
  148. Colin, C.; Kannengieser, O.; Bergez, W.; Lebon, M.; Sebilleau, J.; Sagan, M.; Tanguy, S.Nucleate pool boiling in microgravity: Recent progress and future prospects Comptes Rendus Mécanique 2017, 345, 21-34.
  149. Abedini, E.; Zarei, T.; Rajabnia, H.; Kalbasi, R.; Afrand, M.Numerical investigation of vapor volume fraction in subcooled flow boiling of a nanofluid Journal of Molecular Liquids 2017, 238, 281-289.
  150. Tryggvason, G.; Bunner, B.; Esmaeeli, A.; Juric, D.; Al-Rawahi, N.; Tauber, W.; Han, J.; Nas, S.; Jan, Y.-J.A front-tracking method for the computations of multiphase flow Journal of Computational Physics 2001, 169, 708-759.
  151. Liu, Q.; Wang, W.; Palm, B.A numerical study of the transition from slug to annular flow in micro-channel convective boiling Applied Thermal Engineering 2017, 112, 73-81.
  152. Nazari, S.; Toghraie, D.Numerical simulation of heat transfer and fluid flow of Water-CuO Nanofluid in a sinusoidal channel with a porous medium Physica E: Low-dimensional Systems and Nanostructures 2017, 87, 134-140.
  153. Mukherjee, A.; Kandlikar, S. G.Numerical simulation of growth of a vapor bubble during flow boiling of water in a microchannel Microfluidics and Nanofluidics 2005, 1, 137-145.
  154. Fukagata, K.; Kasagi, N.; Ua-arayaporn, P.; Himeno, T.Numerical simulation of gas–liquid two-phase flow and convective heat transfer in a micro tube International Journal of Heat and Fluid Flow 2007, 28, 72-82.
  155. Piasecka, M.; Strąk, K.; Maciejewska, B.Calculations of flow boiling heat transfer in a minichannel based on Liquid Crystal and Infrared Thermography data Heat Transfer Engineering 2017, 38, 332-346.
  156. Sahar, A. M.; Wissink, J.; Mahmoud, M. M.; Karayiannis, T. G.; Ishak, M. S. A.Effect of hydraulic diameter and aspect ratio on single phase flow and heat transfer in a rectangular microchannel Applied Thermal Engineering 2017, 115, 793-814.
  157. Dai, Z.; Guo, Z.; Fletcher, D. F.; Haynes, B. S.Taylor flow heat transfer in microchannels—Unification of liquid–liquid and gas–liquid results Chemical Engineering Science 2015, 138, 140-152.
  158. Fischer, M.; Juric, D.; Poulikakos, D.Large convective heat transfer enhancement in microchannels with a train of coflowing immiscible or colloidal droplets Journal of Heat Transfer 2010, 132, 112402.
  159. Che, Z.; Wong, T. N.; Nguyen, N.-T.Heat transfer enhancement by recirculating flow within liquid plugs in microchannels International Journal of Heat and Mass Transfer 2012, 55, 1947-1956.
  160. Che, Z.; Wong, T. N.; Nguyen, N.-T.; Yang, C.Three dimensional features of convective heat transfer in droplet-based microchannel heat sinks International Journal of Heat and Mass Transfer 2015, 86, 455-464.
  161. Asthana, A.; Zinovik, I.; Weinmueller, C.; Poulikakos, D.Significant Nusselt number increase in microchannels with a segmented flow of two immiscible liquids: An experimental study International Journal of Heat and Mass Transfer 2011, 54, 1456-1464.
  162. Eain, M. M. G.; Egan, V.; Punch, J.Local Nusselt number enhancements in liquid–liquid Taylor flows International Journal of Heat and Mass Transfer 2015, 80, 85-97.


DOI: https://doi.org/10.24294/tse9926

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Asif Khan, Babar hayat, Muddassir Ali, Imran Sajid, Adil oya, Abdullah zafar

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This site is licensed under a Creative Commons Attribution 4.0 International License.