Theoretical investigation on diastereoselective [2+2] cycloaddition and Pd-catalyzed enantioselective [3+2] cycloaddition for synthesis of cis-β-lactam and exo-furobenzopyranone

Nan Lu, Chengxia Miao, Xiaozheng Lan

Article ID: 5949
Vol 7, Issue 1, 2024

VIEWS - 22 (Abstract) 14 (PDF) 4 (Supp.file)

Abstract


The mechanism is investigated for Wolff rearrangement/Staudinger [2+2] cycloaddition cascade and Pd-catalyzed, decarboxylative, formal [3+2] cycloaddition. Wolff rearrangement of 3-diazotetramic acid is determined to be rate-limiting step generates cyclic acyl ketene. The interaction of ketene with imine firstly results in zwitterion followed by conrotatory cyclization giving major cis-β-lactam. For synthesis of s-VECs, the epoxidation−cyclization cascade and hydrolysis give precursor of better performing exocyclic derivative. The reaction with 3-cyanochromone includes decarboxylation, nucleophilic attack and subsequent ring closure yielding 5-exo-trig furobenzopyranone. Based on the comparison between possible paths, the diastereoselectivity of cis over trans and regio-divergence of 5-exo-trig over 7-endo-trig are both kinetically controlled for [2+2] and [3+2] cycloaddition in common. The positive solvation effect is suggested by decreased absolute and activation energies in chlorobenzene and chloroform solution compared with in gas. These results are supported by Multiwfn analysis on FMO composition of specific TSs, and MBO value of vital bonding, breaking.


Keywords


cycloaddition; diastereoselective; enantioselective; wolff rearrangement; spirocyclic scaffold

Full Text:

PDF Supp.file


References


1. Hiesinger K, Dar’in D, Proschak E, et al. Spirocyclic Scaffolds in Medicinal Chemistry. Journal of Medicinal Chemistry. 2020; 64(1): 150-183. doi: 10.1021/acs.jmedchem.0c01473

2. Lima LM, Silva BNM da, Barbosa G, et al. β-lactam antibiotics: An overview from a medicinal chemistry perspective. European Journal of Medicinal Chemistry. 2020; 208: 112829. doi: 10.1016/j.ejmech.2020.112829

3. Fu DJ, Zhang YF, Chang AQ, et al. β-Lactams as promising anticancer agents: Molecular hybrids, structure activity relationships and potential targets. European Journal of Medicinal Chemistry. 2020; 201: 112510. doi: 10.1016/j.ejmech.2020.112510

4. Chen L, Wang K, Shao Y, et al. Stereoselective Synthesis of Fully Substituted β-Lactams via Metal–Organo Relay Catalysis. Organic Letters. 2019; 21(10): 3804-3807. doi: 10.1021/acs.orglett.9b01255

5. Krasavin M, Synofzik J, Bakulina O, et al. Dialkyl Diazomalonates in Transition-Metal-Free, Thermally Promoted, Diastereoselective Wolff β-Lactam Synthesis. Synlett. 2020; 31(13): 1273-1276. doi: 10.1055/s-0040-1707811

6. Golubev AA, Smetanin IA, Agafonova AV, et al. [2+1+1] Assembly of spiro β-lactams by Rh(ii)-catalyzed reaction of diazocarbonyl compounds with azirines/isoxazoles. Organic & Biomolecular Chemistry. 2019; 17(28): 6821-6830. doi: 10.1039/c9ob01301f

7. Tang J, Yan ZH, Zhan G, et al. Visible-light-mediated sequential Wolff rearrangement and Staudinger cycloaddition enabling the assembly of spiro-pyrazolone-β-lactams. Organic Chemistry Frontiers. 2022; 9(16): 4341-4346. doi: 10.1039/d2qo00742h

8. Krasavin M, Eremeyeva M, Zhukovsky D, et al. The Use of α-Diazo-γ-butyrolactams in the Büchner–Curtius–Schlotterbeck Reaction of Cyclic Ketones Opens New Entry to Spirocyclic Pyrrolidones. Synlett. 2020; 31(10): 982-986. doi: 10.1055/s-0040-1708011

9. Dar’in D, Kantin G, Bakulina O, et al. Spirocyclizations Involving Oxonium Ylides Derived from Cyclic α-Diazocarbonyl Compounds: An Entry into 6-Oxa-2-azaspiro[4.5]decane Scaffold. The Journal of Organic Chemistry. 2020; 85(23): 15586-15599. doi: 10.1021/acs.joc.0c02356

10. Dar’in D, Kantin G, Chupakhin E, et al. Natural‐Like Spirocyclic Δα,β‐Butenolides Obtained from Diazo Homophthalimides. Chemistry – A European Journal. 2021; 27(31): 8221-8227. doi: 10.1002/chem.202100880

11. Qiao C, Villar‐Yanez A, Sprachmann J, et al. Organocatalytic Trapping of Elusive Carbon Dioxide Based Heterocycles by a Kinetically Controlled Cascade Process. Angewandte Chemie International Edition. 2020; 59(42): 18446-18451. doi: 10.1002/anie.202007350

12. Khan I, Zhao C, Zhang YJ. Pd-Catalyzed asymmetric decarboxylative cycloaddition of vinylethylene carbonates with 3-cyanochromones. Chemical Communications. 2018; 54(37): 4708-4711. doi: 10.1039/c8cc02456a

13. Shah BH, Khan S, Zhao C, et al. Synthesis of Chiral 2,3-Dihydrofurans via One-Pot Pd-Catalyzed Asymmetric Allylic Cycloaddition and a Retro-Dieckmann Fragmentation Cascade. The Journal of Organic Chemistry. 2023; 88(16): 12100-12104. doi: 10.1021/acs.joc.3c00976

14. Xiong W, Zhang S, Li H, et al. Pd-Catalyzed Decarboxylative Cycloaddition of Vinylethylene Carbonates with Isothiocyanates. The Journal of Organic Chemistry. 2020; 85(14): 8773-8779. doi: 10.1021/acs.joc.0c00243

15. Zhang H, Gao X, Jiang F, et al. Palladium‐Catalyzed Asymmetric [3+2] Cycloaddition of Vinylethylene Carbonates with 2‐Arylidene‐1,3‐Indandiones: Synthesis of Tetrahydrofuran‐Fused Spirocyclic 1,3‐Indandiones. European Journal of Organic Chemistry. 2020; 2020(30): 4801-4804. doi: 10.1002/ejoc.202000762

16. Li T, Zhu X, Jiang H, et al. Pd‐catalyzed decarboxylative [3 + 2] cycloaddition: Assembly of highly functionalized spirooxindoles bearing two quaternary centers. Applied Organometallic Chemistry. 2021; 36(2). doi: 10.1002/aoc.6516

17. Wang J, Zhao L, Rong Q, et al. Asymmetric Synthesis of 3,3′-Tetrahydrofuryl Spirooxindoles via Palladium-Catalyzed [3+2] Cycloadditions of Methyleneindolinones with Vinylethylene Carbonates. Organic Letters. 2020; 22(15): 5833-5838. doi: 10.1021/acs.orglett.0c01920

18. Reis J, Gaspar A, Milhazes N, et al. Chromone as a Privileged Scaffold in Drug Discovery: Recent Advances. Journal of Medicinal Chemistry. 2017; 60(19): 7941-7957. doi: 10.1021/acs.jmedchem.6b01720

19. Gilmore K, Alabugin IV. Cyclizations of Alkynes: Revisiting Baldwin’s Rules for Ring Closure. Chemical Reviews. 2011; 111(11): 6513-6556. doi: 10.1021/cr200164y

20. Trost BM, Zuo Z. Regiodivergent Synthesis of Spirocyclic Compounds through Pd‐Catalyzed Regio‐ and Enantioselective [3+2] Spiroannulation. Angewandte Chemie International Edition. 2021; 60(11): 5806-5810. doi: 10.1002/anie.202016439

21. Lei Y, Xu J. Efficient synthesis of ethyl 2-(oxazolin-2-yl)alkanoates via ethoxycarbonylketene-induced electrophilic ring expansion of aziridines. Beilstein Journal of Organic Chemistry. 2022; 18: 70-76. doi: 10.3762/bjoc.18.6

22. Darin D, Kantin G, Glushakova D, et al. Diazo Tetramic Acids Provide Access to Natu-ral-Like Spirocyclic Δα,β-Butenolides through Rh(II)-Catalyzed O-H Insertion/Base-Promoted Cyclization. The Journal of Organic Chemistry. 2023; doi: 10.1021/acs.-joc.2c02600

23. Krivovicheva V, Kantin G, Dar’in D, et al. Rh(II)-catalyzed condensation of 3-diazotetramic acids with nitriles delivers novel druglike 5,6-dihydro-4H-pyrrolo[3,4-d]oxazol-4-ones. Tetrahedron Letters. 2023; 120: 154457. doi: 10.1016/j.tetlet.2023.154457

24. Krivovicheva V, Lyutin I, Kantin G, et al. Access to Spiro Bis-β-lactams via a Metal-Free Microwave-Assisted Wolff Rearrangement/Staudinger [2+2] Cycloaddition Cascade Involving 3-Diazotetramic Acids and Imines. The Journal of Organic Chemistry. 2024; 89(5): 3585-3589. doi: 10.1021/acs.joc.3c02494

25. Topp C, Metzler JM, Dressler F, et al. Preparation of Spirocyclic Vinylic Carbonates from Allylic Alcohols. Organic Letters. 2024; 26(3): 577-580. doi: 10.1021/acs.orglett.3c03253

26. Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 09 (Revision B.01). Gaussian, Inc., Wallingford; CT; 2010.

27. Hay PJ, Wadt WR. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. The Journal of Chemical Physics. 1985; 82(1): 270-283. doi: 10.1063/1.448799

28. Lv H, Han F, Wang N, et al. Ionic Liquid‐Catalyzed C−C Bond Formation for the Synthesis of Polysubstituted Olefins. European Journal of Organic Chemistry. 2022; 2022(45). doi: 10.1002/ejoc.202201222

29. Zhuang H, Lu N, Ji N, et al. Bu4NHSO4‐Catalyzed Direct N‐Allylation of Pyrazole and its Derivatives with Allylic Alcohols in Water: A Metal‐Free, Recyclable and Sustainable System. Advanced Synthesis & Catalysis. 2021; 363(24): 5461-5472. doi: 10.1002/adsc.202100864

30. Lu N, Lan X, Miao C, et al. Theoretical investigation on transformation of Cr(II) to Cr(V) complexes bearing tetra‐N‐heterocyclic carbene and group transfer reactivity. International Journal of Quantum Chemistry. 2020; 120(18). doi: 10.1002/qua.26340

31. Lu N, Liang H, Qian P, et al. Theoretical investigation on the mechanism and enantioselectivity of organocatalytic asymmetric Povarov reactions of anilines and aldehydes. International Journal of Quantum Chemistry. 2020; 121(8). doi: 10.1002/qua.26574

32. Lu N, Wang Y. Alloy and media effects on the ethanol partial oxidation catalyzed by bimetallic Pt6M (M = Co, Ni, Cu, Zn, Ru, Rh, Pd, Sn, Re, Ir, and Pt). Computational and Theoretical Chemistry. 2023; 1228: 114252. doi: 10.1016/j.comptc.2023.114252

33. Becke AD. Density-functional thermochemistry. IV. A new dynamical correlation functional and implications for exact-exchange mixing. The Journal of Chemical Physics. 1996; 104(3): 1040-1046. doi: 10.1063/1.470829

34. Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B. 1988; 37(2): 785-789. doi: 10.1103/physrevb.37.785

35. Catellani M, Mealli C, Motti E, et al. Palladium−Arene Interactions in Catalytic Intermediates: An Experimental and Theoretical Investigation of the Soft Rearrangement between η1 and η2 Coordination Modes. Journal of the American Chemical Society. 2002; 124(16): 4336-4346. doi: 10.1021/ja016587e

36. Zicovich‐Wilson CM, Pascale F, Roetti C, et al. Calculation of the vibration frequencies of α‐quartz: The effect of Hamiltonian and basis set. Journal of Computational Chemistry. 2004; 25(15): 1873-1881. doi: 10.1002/jcc.20120

37. Nielsen RJ, Goddard WA. Mechanism of the Aerobic Oxidation of Alcohols by Palladium Complexes of N-Heterocyclic Carbenes. Journal of the American Chemical Society. 2006; 128(30): 9651-9660. doi: 10.1021/ja060915z

38. Zandler ME, D’Souza F. The remarkable ability of B3LYP/3-21G(*) calculations to describe geometry, spectral and electrochemical properties of molecular and supramolecular porphyrin–fullerene conjugates. Comptes Rendus Chimie. 2006; 9(7-8): 960-981. doi: 10.1016/j.crci.2005.12.008

39. Marenich AV, Cramer CJ, Truhlar DG. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. The Journal of Physical Chemistry B. 2009; 113(18): 6378-6396. doi: 10.1021/jp810292n

40. Tapia O. Solvent effect theories: Quantum and classical formalisms and their applications in chemistry and biochemistry. Journal of Mathematical Chemistry. 1992; 10(1): 139-181. doi: 10.1007/bf01169173

41. Tomasi J, Persico M. Molecular Interactions in Solution: An Overview of Methods Based on Continuous Distributions of the Solvent. Chemical Reviews. 1994; 94(7): 2027-2094. doi: 10.1021/cr00031a013

42. Tomasi J, Mennucci B, Cammi R. Quantum Mechanical Continuum Solvation Models. Chemical Reviews. 2005; 105(8): 2999-3094. doi: 10.1021/cr9904009

43. Reed AE, Weinstock RB, Weinhold F. Natural population analysis. The Journal of Chemical Physics. 1985; 83(2): 735-746. doi: 10.1063/1.449486

44. Reed AE, Curtiss LA, Weinhold F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chemical Reviews. 1988; 88(6): 899-926. doi: 10.1021/cr00088a005

45. Lu T, Chen F. Multiwfn: A multifunctional wavefunction analyzer. Journal of Computational Chemistry. 2011; 33(5): 580-592. doi: 10.1002/jcc.22885




DOI: https://doi.org/10.24294/tse.v7i1.5949

Refbacks

  • There are currently no refbacks.


License URL: https://creativecommons.org/licenses/by/4.0/

Creative Commons License

This site is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.