Numerical simulation and experimental study of contact thermal resistance under high temperature conditions
Vol 5, Issue 1, 2022
VIEWS - 499 (Abstract) 281 (pdf)
Abstract
Keywords
Full Text:
pdfReferences
1. Wang A, Zhao J. Review of prediction for thermal contact resistance. Science China Technological Sciences 2010; 53: 1798–1808.
2. Zhang P, Xuan Y, Li Q. Development on thermal contact resistance. CIESC Journal 2012; 63(2): 335–349.
3. Greenwood JA. Constriction resistance and the real area of contact. British Journal of Applied Physics 2002; 17(12): 1621–1632.
4. Cooper MG, Mikic BB, Yovanovich MM. Thermal contact conductance. International Journal of Heat and Mass Transfer 1969; 12(3): 279–300.
5. Liu D, Zhang J. Numerical simulation of high-temperature thermal contact resistance and its reduction mechanism. PLOS ONE 2018; 13(3): e194483.
6. Cui T, Li Q, Xuan Y, et al. Multiscale simulation of thermal contact resistance in electronic packaging. International Journal of Thermal Sciences 2014; 83: 16–24.
7. Fang W, Gou J, Chen L, et al. A multi-block lattice Boltzmann method for the thermal contact re-sistance at the interface of two solids. applied thermal engineering 2018; 138: 122–132.
8. Gou J, Ren X, Dai Y, et al. Study of thermal contact resistance of rough surfaces based on the practical topography. Computers & Fluids 2018; 164: 2–11.
9. Dai Y, Gou J, Ren X, et al. A test-validated pre-diction model of thermal contact resistance for Ti-6Al-4V alloy. Applied Energy 2018; 228: 1601–1617.
10. Xian Y, Zhang P, Zhai S, et al. Re-estimation of thermal contact resistance considering nearfield thermal radiation effect. Applied Thermal Engi-neering 2019; 157: 113601.
11. Yang B, Li M, Gao J, et al. Temperature depend-ence study on thermophysical properties of gra-phene foam and the correlation with interface thermal conductance. Journal of Thermal Science and Technology 2019; 18(4): 259–265.
12. Zhang P, Xuan Y, Li Q. A high-precision instru-mentation of measuring thermal contact resistance using reversible heat flux. Experimental Thermal and Fluid Science 2014; 54: 204–211.
13. Xuan Y, Li Q, Zhang P. Measurement method and instrument of thermal contact resistance at high temperature. Scientia Sinica (Technologica) 2019; 49(5): 491–500.
14. China Aviation Materials Handbook Committee. Zhongguo hangkong cailiao shouce (Chinese) [China aviation materials handbook]. Beijing: China Standard Press; 2002.
15. Zhu B. Youxian danyuanfa yuanli yu yingyong (Chinese) [The finite element method theory and applications].4th ed. Beijing: China Water Power Press; 2018.
16. Yang S, Tao W. Chuanrexue (Chinese) [Heat Transfer]. 4th ed. Beijing: Higher Education Press; 2006.
17. Ling G. ANSYS 14.0 relixue fenxi cong rumen dao jingtong (Chinese) [ANSYS 14.0 thermodynamic analysis from entry to proficiency]. Beijing: Tsinghua University Press; 2013.
18. Madhusudana CV. Accuracy in thermal contact conductance experiments-the effect of heat losses to the surroundings. International Communica-tions in Heat and Mass Transfer 2000; 27(6): 877–891.
19. Carbone G, Bottiglione F. Asperity contact theo-ries: Do they predict linearity between contact area and load? Journal of the Mechanics and Physics of Solids 2008; 56(8): 2555–2572.
DOI: https://doi.org/10.24294/tse.v5i1.1523
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Linquan Shi, Qiang Li
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This site is licensed under a Creative Commons Attribution 4.0 International License.