Thermodynamic stability diagram of the copper/water/amylxanthate flotation system
Vol 4, Issue 1, 2021
VIEWS - 540 (Abstract) 401 (pdf)
Abstract
Keywords
Full Text:
pdfReferences
1. Somasundaran P, Moudgil BM. Reagents in minerals technology. Florida: CRC Press; 1988.
2. Roy KM. Xanthates. In: Ullmann’s encyclopedia of industrial chemistry.
3. Crozier RD. Flotation: Theory, reagents and ore testing. 1st ed. Oxford: Pergamon Press; 1992.
4. Fuerstenau DW. Advances in flotation technology. SME: Littleton; 1999. p. 3–21.
5. Dudenkov S, Shubov L, Glazunov L. Fundamentos de la teoría y la práctica de empleo de reactivos de flotación (Spanish) [Theoretical and practical basis for the use of flotation reagents]. Moscow: Mir Publishers; 1980.
6. Harris PJ. Reagents in mineral technology. New York: Marcel Dekker; 1988.
7. Abramov AA, Forssberg KSE. Chemistry and optimal conditions for copper minerals flotation: Theory and practice. Mineral Processing and Extractive Metallurgy Review 2005; 26: 77–143.
8. Rao SR. Xanthates and related compounds. 1st ed. New York: Marcel Dekker; 1971. p. 1–504.
9. Stalidis GA, Matis KA, Lazaridis NK. Selective separation of cu, zn, and as from solution by flotation techniques. Separation Science and Technology 1989; 24(1): 97–109.
10. Matis KA, Mavros P. Recovery of metals by ion flotation from dilute aqueous solutions. Separation and Purification Methods 1991; 20: 1–48.
11. Iwasaki I, Cooke SRB. The decomposition of xanthate in acid solution. Journal of the American Chemical Society 1958; 80: 285–288.
12. Tipman RN, Leja J. Reactivity of xanthate and dixanthogen in aqueous solution of different pH. Colloid and Polymer Science 1975; 253: 4–10.
13. Sun Z, Forsling W. The degradation kinetics of ethyl-xanthate as a function of pH in aqueous solution. Minerals Engineering 1997; 10(4): 389–400.
14. Leja J. Surface chemistry of froth flotation. New York: Plenum Press; 1982. p. 1228.
15. Lazaridis NK, Matis KA, Stalidis GA, et al. Dissolved-air flotation of metal ions. Separation Science and Technology 1992; 27(13): 1743–1758.
16. Kakovsky I. Physicochemical properties of some flotation reagent and their salts with ions of heave ironferrous metals. Proceedings of the Second International Congress of Surface Activity; Lon-don. 1957. p. 225–237.
17. Lazaridis NK, Peleka EN, Karapantsios ThD, et al. Copper removal from effluents by various separation techniques. Hydrometallurgy 2004; 74(1–2): 149–156.
18. Basilio C, Pritzker MD, Yoon RH. Thermodinamics, electrochemistry and flotation of de calcocite-potassium ethyl xanthate system. 114th AIME Annual Meeting; 1985 Feb 24–27; New York. 1985. p. 85–86.
19. Young CA. Nonstoichiometry of chalcocite in water-xanthate systems [MSc thesis]. Virginia Polytechnic Institute and State University; 1987. p. 296.
20. Woods R, Young CA, Yoon RH. Ethyl xanthate chemisorption isotherms and Eh-pH diagrams for the copper/water/xanthate and chalcocite/water/xanthate systems. International Journal of Mineral Processing 1990; 30: 17–33.
21. Joly HA, Majerus R, Westaway KC. The effect of diethylenetriamine on the formation of Cu2+, Ni2+, and Fe3+ amyl xanthate ion complexes. Minerals Engineering 2004; 17: 1023–1036.
22. Klauditz W. The ripening of viscose. Tech-Wise; 1939. p. 251–259.
23. Pomianowsky A, Leja J. Spectrophotometric study of xanthate and dixanthogen solutions. Canadian Journal Chemistry 1963; 41: 2219–2230.
24. Harris PJ, Filkenstein NP. Interactions between sulphide minerals and xanthates, I. The formation of monothiocarbonate at galena and pyrite surfaces. International Journal of Mineral Processing 1975; 2(1): 77–100.
25. Obregón H. Xantatos en sistemas de flotación (Spanish) [Xanthates in flotation systems]. Reacciones Fenómenos y Mecanismos 1990; 5.
26. Donato P, Cases JM, Kongolo M, et al. Stability of the amylxanthate ion as a function of pH: Modelling and comparison with the ethylxanthate ion. International Journal of Mineral Processing 1989; 25: 1–16.
27. Hepel T, Pomianowski A. Diagrams of electrochemical equilibria of the system copper-potassium ethylxanthate-water at 25 ºC. International Journal of Mineral Processing 1977; 4: 245–361.
28. Puigdomenech I. Software equilibrio químico (Spanish) [Chemical equilibrium software]. Royal Institute of Technology 2004.
29. Ramírez Serrano B. Remoción por flotación iónica de iones cobre con (Spanish) [Removal by ionic flotation of copper ions with potassium amylxanthate] [PhD thesis]. Moa: Instituto Superior Minero Metalúrgico; 2011. p. 120.
30. Bulatovic SM. Handbook of flotation reagents. Chemistry, theory and practice: Flotation of sulfide ores. Amsterdam: Elsevier; 2007. p. 443.
31. AGPS. Sodium ethyl xanthate. 1995. p. 1–64.
32. Zohir N, Mustapha B, Abd-Elbaki D. Synthesis and structural characterization of xanthate (KEX) in sight of their utilization in the processe s of sulphides flotation. Journal of Minerals and Materials Characterization and Engineering 2009; 8(6): 469–477.
33. Jones MH, Woodcock JT. Dixanthogen determination in flotation liquors by solvent extraction and ultraviolet spectrometry. Analytical Chemistry 1986; 58: 588–591.
34. Jones MH, Woodcock JT. Ultraviolet spectrometry of flotation reagents with special reference to the determination of xanthate in flotation liquors. London: Chameleon Press; 1973. p. 110.
DOI: https://doi.org/10.24294/tse.v4i1.1509
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Beatriz Ramírez-Serrano, Alexis Otero-Calvis, Alfredo Coello-Velázquez
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This site is licensed under a Creative Commons Attribution 4.0 International License.