Thermodynamic stability diagram of the copper/water/amylxanthate flotation system

Beatriz Ramírez-Serrano, Alexis Otero-Calvis, Alfredo Coello-Velázquez

Article ID: 1509
Vol 4, Issue 1, 2021

(Abstract)

Abstract


The purpose of this work was to obtain the thermodynamic stability diagram that characterizes the copper/water/amylxanthate flotation system, as part of the theoretical foundation necessary for the analysis of the copperion flotation process with the flotation collector reagent potassium amylxanthate. From the system of fundamental chemical reactions and with the help of the Medusa software, the Eh-pH diagram was obtained, in which the stability zones of the different chemical species are defined and it is established that in the pH range from 4 to 13, the xanthogenic species of copper(I) and (II) coexist, whose ratio decreases with the increase of pH.

Keywords


Eh-pH Diagram; Xanthate; Copper Amyloxanthate; Copper; Ionic Flotation

Full Text:

pdf


References


1. Somasundaran P, Moudgil BM. Reagents in minerals technology. Florida: CRC Press; 1988.

2. Roy KM. Xanthates. In: Ullmann’s encyclopedia of industrial chemistry.

3. Crozier RD. Flotation: Theory, reagents and ore testing. 1st ed. Oxford: Pergamon Press; 1992.

4. Fuerstenau DW. Advances in flotation technology. SME: Littleton; 1999. p. 3–21.

5. Dudenkov S, Shubov L, Glazunov L. Fundamentos de la teoría y la práctica de empleo de reactivos de flotación (Spanish) [Theoretical and practical basis for the use of flotation reagents]. Moscow: Mir Publishers; 1980.

6. Harris PJ. Reagents in mineral technology. New York: Marcel Dekker; 1988.

7. Abramov AA, Forssberg KSE. Chemistry and optimal conditions for copper minerals flotation: Theory and practice. Mineral Processing and Extractive Metallurgy Review 2005; 26: 77–143.

8. Rao SR. Xanthates and related compounds. 1st ed. New York: Marcel Dekker; 1971. p. 1–504.

9. Stalidis GA, Matis KA, Lazaridis NK. Selective separation of cu, zn, and as from solution by flotation techniques. Separation Science and Technology 1989; 24(1): 97–109.

10. Matis KA, Mavros P. Recovery of metals by ion flotation from dilute aqueous solutions. Separation and Purification Methods 1991; 20: 1–48.

11. Iwasaki I, Cooke SRB. The decomposition of xanthate in acid solution. Journal of the American Chemical Society 1958; 80: 285–288.

12. Tipman RN, Leja J. Reactivity of xanthate and dixanthogen in aqueous solution of different pH. Colloid and Polymer Science 1975; 253: 4–10.

13. Sun Z, Forsling W. The degradation kinetics of ethyl-xanthate as a function of pH in aqueous solution. Minerals Engineering 1997; 10(4): 389–400.

14. Leja J. Surface chemistry of froth flotation. New York: Plenum Press; 1982. p. 1228.

15. Lazaridis NK, Matis KA, Stalidis GA, et al. Dissolved-air flotation of metal ions. Separation Science and Technology 1992; 27(13): 1743–1758.

16. Kakovsky I. Physicochemical properties of some flotation reagent and their salts with ions of heave ironferrous metals. Proceedings of the Second International Congress of Surface Activity; Lon-don. 1957. p. 225–237.

17. Lazaridis NK, Peleka EN, Karapantsios ThD, et al. Copper removal from effluents by various separation techniques. Hydrometallurgy 2004; 74(1–2): 149–156.

18. Basilio C, Pritzker MD, Yoon RH. Thermodinamics, electrochemistry and flotation of de calcocite-potassium ethyl xanthate system. 114th AIME Annual Meeting; 1985 Feb 24–27; New York. 1985. p. 85–86.

19. Young CA. Nonstoichiometry of chalcocite in water-xanthate systems [MSc thesis]. Virginia Polytechnic Institute and State University; 1987. p. 296.

20. Woods R, Young CA, Yoon RH. Ethyl xanthate chemisorption isotherms and Eh-pH diagrams for the copper/water/xanthate and chalcocite/water/xanthate systems. International Journal of Mineral Processing 1990; 30: 17–33.

21. Joly HA, Majerus R, Westaway KC. The effect of diethylenetriamine on the formation of Cu2+, Ni2+, and Fe3+ amyl xanthate ion complexes. Minerals Engineering 2004; 17: 1023–1036.

22. Klauditz W. The ripening of viscose. Tech-Wise; 1939. p. 251–259.

23. Pomianowsky A, Leja J. Spectrophotometric study of xanthate and dixanthogen solutions. Canadian Journal Chemistry 1963; 41: 2219–2230.

24. Harris PJ, Filkenstein NP. Interactions between sulphide minerals and xanthates, I. The formation of monothiocarbonate at galena and pyrite surfaces. International Journal of Mineral Processing 1975; 2(1): 77–100.

25. Obregón H. Xantatos en sistemas de flotación (Spanish) [Xanthates in flotation systems]. Reacciones Fenómenos y Mecanismos 1990; 5.

26. Donato P, Cases JM, Kongolo M, et al. Stability of the amylxanthate ion as a function of pH: Modelling and comparison with the ethylxanthate ion. International Journal of Mineral Processing 1989; 25: 1–16.

27. Hepel T, Pomianowski A. Diagrams of electrochemical equilibria of the system copper-potassium ethylxanthate-water at 25 ºC. International Journal of Mineral Processing 1977; 4: 245–361.

28. Puigdomenech I. Software equilibrio químico (Spanish) [Chemical equilibrium software]. Royal Institute of Technology 2004.

29. Ramírez Serrano B. Remoción por flotación iónica de iones cobre con (Spanish) [Removal by ionic flotation of copper ions with potassium amylxanthate] [PhD thesis]. Moa: Instituto Superior Minero Metalúrgico; 2011. p. 120.

30. Bulatovic SM. Handbook of flotation reagents. Chemistry, theory and practice: Flotation of sulfide ores. Amsterdam: Elsevier; 2007. p. 443.

31. AGPS. Sodium ethyl xanthate. 1995. p. 1–64.

32. Zohir N, Mustapha B, Abd-Elbaki D. Synthesis and structural characterization of xanthate (KEX) in sight of their utilization in the processe s of sulphides flotation. Journal of Minerals and Materials Characterization and Engineering 2009; 8(6): 469–477.

33. Jones MH, Woodcock JT. Dixanthogen determination in flotation liquors by solvent extraction and ultraviolet spectrometry. Analytical Chemistry 1986; 58: 588–591.

34. Jones MH, Woodcock JT. Ultraviolet spectrometry of flotation reagents with special reference to the determination of xanthate in flotation liquors. London: Chameleon Press; 1973. p. 110.




DOI: https://doi.org/10.24294/tse.v4i1.1509

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Beatriz Ramírez-Serrano, Alexis Otero-Calvis, Alfredo Coello-Velázquez

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This site is licensed under a Creative Commons Attribution 4.0 International License.