Review of the calculation of the boiling heat transfer coefficient in mini-channels and micro-channels
Vol 4, Issue 1, 2021
VIEWS - 3775 (Abstract) 2058 (pdf)
Abstract
Keywords
Full Text:
pdfReferences
1. Tuckerman DB, Pease RFW. High performance heat sinking for VLSI. IEEE Electron Device Let-ters 1982; 2(5): 126–129.
2.
3. Kandlikar SG. Nucleation characteristics and stability considerations during flow boiling in microchannels. Experimental Thermal and Fluid Science 2006; 30(5): 441-447. DOI: 10.1016/j.expthermflusci.2005.10.001.
4. Mudawar I. Assessment of high-heat-flux thermal management schemes. IEEE Transactions on Components and Packaging Technologies 2001; 24(2): 122-141.
5. Thome JR. Boiling in microchannels: A review of experiment and theory. International Journal of Heat and Fluid Flow 2004; 25(2): 128-139. DOI: 10.1016/j.ijheatfluidflow.2003.11.005.
6. Shah RK, Sekulic DP. Fundamental of heat exchanger design. New Jersey, USA: John Wiley & Sons, INC.; 2003. p. 9.
7. Kaew-On J, Sakamatapan K, Wongwises S, et al. Flow boiling heat transfer of R134a in the multiport minichannel heat exchangers. Experimental Thermal and Fluid Science 2011; 35(2): 364-374.
8. Kandlikar SG. A roadmap for implementing minichannels in refrigeration and air-conditioning systems-current status and future directions. Heat Transfer Engineering 2007; 28(12): 973–985. DOI: 10.1080/01457630701483497.
9. Jiang P, Fan M, Si G, et al. Thermal-hydraulic performance of small-scale micro-channel and porousmedia heat-exchangers. International Journal of Heat and Mass Transfer 2001; 44(5): 1039-1051.
10. Okawa T. Onset of nucleate boiling in mini and micochannels: A brief review. Frontiers in Heat and Mass Transfer 2012; 3: 013001. DOI: 10.5098/hmt.v3.1.3001.
11. Kandlikar SG. Similarities and differences between flow boiling in microchannels and pool boiling. Heat Transfer Engineering 2010; 31(3): 159-167. DOI: 10.1080/01457630903304335.
12. Mehendale SS, Jacobi AM, Shah RK, et al. Fluid flow and heat transfer at micro and meso-scales with application to heat exchanger design. Applied Mechanics Reviews 2000; 53(7): 175-193.
13. Kandlikar SG, Balasubramanian P. An extension of the flow boiling correlation to transition, laminar, and deep laminar flows in minichannels and microchannels. Heat Transfer Engineering 2004; 25(3): 89-93. DOI: 10.1080/01457630490280425.
14. Kew PA, Cornwell K. Correlations for the prediction of boiling heat transfer in small diameter channels. Applied Thermal Engineering 1997; 17(8-10): 705-715.
15. Thome JR, Dupont V, Jacobi AM, et al. Heat transfer model for evaporation in microchannels. Part I: Presentation of the model. International Journal of Heat and Mass Transfer 2004; 47(14-16): 3375-3385.
16. Barber J, Brutin D, Sefiane K, et al. Bubble confinement in flow boiling of FC-72 in a "rectangular" microchannel of high aspect ratio. Experimental Thermal and Fluid Science 2010; 34(8): 1375-1388.
17. Harirchian T, Garimella SV. Flow regime-based modeling of heat transfer and pressure drop in microchannel flow boiling. International Journal of Heat and Mass Transfer 2012; 55(4): 1246-1260. DOI: 10.1016/j.ijheatmasstransfer.2011.09.024.
18. Brauner N, Maron DM. Identification of the range of small diameters, conduits, regarding two phase flow pattern transitions. International Communications in Heat and Mass Transfer 1992; 19(1): 29-39.
19. Lee J, Mudawar I. Critical heat flux for subcooled flow boiling in microchannel heat sinks. International Journal of Heat and Mass Transfer 2009; 52(13-14): 3341-3352.
20. Zhang W, Hibiki T, Mishima K, et al. Correlation for flow boiling heat transfer at low liquid reynolds number in small diameter channels. Journal Heat Transfer 2005; 127(11): 1214-1221.
21. Tibiriçá CB, Ribatski G. Flow boiling heat transfer of R134a and R245fa in a 2.3 mm tube. International Journal of Heat and Mass Transfer 2010; 53(11-12): 2459-2468.
22. Kandlikar SG. A scale analysis based theoretical force balance model for critical heat flux (CHF) during saturated flow boiling in microchannels and minichannels. Journal of Heat Transfer 2010; 132(8): 081501. DOI: 10.1115/1.4001124.
23. Cooke D, Kandlikar SG. Pool boiling heat transfer and bubble dynamics over plain and enhanced microchannels. Journal of Heat Transfer 2011; 133: 052902. DOI: 10.1115/1.4003046.
24. Liu G, Xu J, Yang Y, et al. Seed bubbles trigger boiling heat transfer in silicon microchannels. Microfluidics and Nanofluidics 2010; 8(3): 341-359.
25. Thome JR, Consolini L. Mechanisms of boiling in micro-channels: Critical assessment. Heat Transfer Engineering 2010; 31(4): 288–297.
26. Zhuan R, Wang W. Simulation on nucleate boiling in micro-channel. International Journal of Heat and Mass Transfer 2010; 53(1-3): 502-512.
27. Kuo CJ, Kosar A, Peles Y, et al. Bubble dynamics during boiling in enhanced surface microchannels. Journal of Microelectromechanical Systems 2006; 15(6): 1514-1527. DOI: 10.1109/JMEMS.2006.885975.
28. Fu X, Zhang P, Huang CJ, et al. Bubble growth, departure and the following flow pattern evolution during flow boiling in a mini-tube. International Journal of Heat and Mass Transfer 2010; 53(21-22): 4819-4831.
29. Karayiannis TG, Shiferaw D, Kenning DBR, et al. Flow patterns and heat transfer for flow boiling in small to micro diameter tubes. Heat Transfer Engineering 2010; 31(4): 257-275.
30. Lee M, Cheung LSL, Lee YK, et al. Height effect on nucleationsite activity and size-dependent bubble dynamics in microchannel convective boiling. Journal of Micromechanics and Microengineering 2005; 15(11): 2121-2129. DOI: 10.1088/0960-1317/15/11/018.
31. Cheng L, Ribatski G, Quibén JM, et al. New prediction methods for CO2 evaporation inside tubes Part I—A two-phase flow pattern map and a flow pattern based phenomenological model for two-phase flow frictional pressure drops. International Journal of Heat and Mass Transfer 2008; 51(1-2): 111-124.
32. Harirchian T, Garimella SV. A comprehensive flow regime map for microchannel flow boiling with quantitative transition criteria. International Journal of Heat and Mass Transfer 2010; 53(13-14): 2694-2702. DOI: 10.1016/j.ijheatmasstransfer.2010.02.039.
33. Revellin R, Thome JR. A new type of diabatic flow pattern map for boiling heat transfer in micro-channels. Journal of Micromechanics and Micro-engineering 2007; 17(4): 788-796.
34. Gnielinski V. New equations for heat and mass transfer in turbulent pipe and channel flow. International Chemical Engineering 1976; 16(2): 359-368.
35. Bertsch SS, Groll EA, Garimella SV, et al. A composite heat transfer correlation for saturated flow boiling in small channels. International Journal of Heat and Mass Transfer 2009; 52(7-8): 2110-2118.
36. Gungor KE, Winterton RHS. A general correlation for flow boiling in tubes and annuli. International Journal of Heat and Mass Transfer 1986; 29(3): 351-358.
37. Jung D, Radermacher R. Prediction of evaporation heat transfer coefficient and pressure drop of refrigerant mixtures. International Journal of Refrigeration 1993; 16(5): 330-338.
38. Liu Z, Winterton RHS. A general correlation for saturated and subcooled flow boiling in tubes and annuli, based on a nucleate pool boiling equation. International Journal of Heat and Mass Transfer 1991; 34(11): 2759-2766.
39. Steiner D, Taborek J. Flow boiling heat transfer in vertical tubes correlated by an asymptotic model. Heat Transfer Engineering 1992; 13(2): 43-69.
40. Shiferaw D, Karayiannis TG, Kenning DBR, et al. Flow boiling in a 1.1 mm tube with R134a experimental results and comparison with model. International Journal of Thermal Sciences 2009; 48(2): 331-341.
41. Basu S, Ndao S, Gregory J, et al. Flow boiling of R134a in circular microtubes-Part II study of critical heat flux condition. Journal of Heat Transfer 2011; 133(5): 051503. DOI: 10.1115/1.4003160.
42. Fang X, Shi R, Zhou Z, et al. Correlations of flow boiling heat transfer of R-134a in minichan-nels: Comparative study. Energy Science and Technology 2011; 1(1): 1-15.
43. Basu S, Ndao S, Michna GJ, et al. Flow boiling of R134a in circular microtubes-Part I study of heat transfer characteristics. Journal of Heat Transfer 2011; 133(5): 051502. DOI: 10.1115/1.4003159.
DOI: https://doi.org/10.24294/tse.v4i1.1505
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 César‐Arnaldo Cisneros‐Ramírez
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This site is licensed under a Creative Commons Attribution 4.0 International License.