Investigation of the Effect of Feeding Gas Flowrate on the Titanium Particle Temperature in Radiofrequency Plasma Torch
Vol 8, Issue 4, 2025
VIEWS - 6 (Abstract)
Abstract
In this study, a computational fluid dynamics (CFD) model is developed for a radio frequency (RF) plasma system designed for powder spheroidization. The electric field is generated analytically by solving the RF coil system, and then the resulting equations are implemented as user-defined functions (UDF) to the CFD model. UDF codes were created and defined in the Fluent program to generate RF plasma. Electromagnetic fields and fluid flow have been modelled in numerical analysis studies, and temperature and velocity distributions were obtained. The effect of this plasma environment on titanium particle temperature is investigated using various particle-feeding gas flow rates. As a result, it is observed that an optimal powder-feeding rate could be determined. It is seen that high particle velocities prevent the attainment of the necessary temperature for melting, while low velocities may cause the temperature to exceed the boiling point. These results conclude that the feeding gas flow rate could be determined for a specific powder size range to obtain the powder temperatures within the melting and boiling temperatures.
Keywords
References
[1] H. ping Duan, X. Liu, X. zhe Ran, J. Li, and D. Liu, “Mechanical properties and microstructure of 3D-printed high Co–Ni secondary hardening steel fabricated by laser melting deposition,” Int. J. Miner. Metall. Mater., vol. 24, no. 9, 2017, doi: 10.1007/s12613-017-1492-4.
[2] M. Ç. Tüzemen, E. Salamcı, and R. Ünal, “Investigation of the relationship between flexural modulus of elasticity and functionally graded porous structures manufactured by AM,” Mater. Today Commun., vol. 31, 2022, doi: 10.1016/j.mtcomm.2022.103592.
[3] A. M. DURSUN, M. Ç. TÜZEMEN, E. SALAMCI, O. YILMAZ, and R. ÜNAL, “Investigation of Compatibility Between Design and Additively Manufactured Parts of Functionally Graded Porous Structures,” Politek. Derg., vol. 25, no. 3, 2022, doi: 10.2339/politeknik.891080.
[4] J. ZHU, H. ZHOU, C. WANG, L. ZHOU, S. YUAN, and W. ZHANG, “A review of topology optimization for additive manufacturing: Status and challenges,” Chinese J. Aeronaut., vol. 34, no. 1, pp. 91–110, Jan. 2021, doi: 10.1016/J.CJA.2020.09.020.
[5] Y. Karabulut and R. Ünal, “Additive manufacturing of ceramic particle-reinforced aluminum‐based metal matrix composites: a review,” Journal of Materials Science, vol. 57, no. 41. 2022, doi: 10.1007/s10853-022-07850-0.
[6] Z. Hao et al., “A comparative study on spheroidization of sodium reduced and hydrogenation-dehydrogenation tantalum powder by RF plasma,” Int. J. Refract. Met. Hard Mater., vol. 100, 2021, doi: 10.1016/j.ijrmhm.2021.105624.
[7] Q. Qin et al., “Spheroidization of tantalum powder by radio frequency inductively coupled plasma processing,” Adv. Powder Technol., vol. 30, no. 8, pp. 1709–1714, Aug. 2019, doi: 10.1016/j.apt.2019.05.022.
[8] J. He, L. Bai, H. Jin, and F. Yuan, “Optimization of tungsten particles spheroidization with different size in thermal plasma reactor based on numerical simulation,” Powder Technol., vol. 302, pp. 288–297, Nov. 2016, doi: 10.1016/j.powtec.2016.08.067.
[9] J. S. Nam, E. Park, and J. H. Seo, “Numerical Analysis of Radio-Frequency Inductively Coupled Plasma Spheroidization of Titanium Metal Powder Under Single Particle and Dense Loading Conditions,” Met. Mater. Int., vol. 26, no. 4, pp. 491–500, Apr. 2020, doi: 10.1007/S12540-019-00348-6/TABLES/4.
[10] J. B. Tong, X. Lu, C. C. Liu, Z. Q. Pi, R. J. Zhang, and X. H. Qu, “Numerical simulation and prediction of radio frequency inductively coupled plasma spheroidization,” Appl. Therm. Eng., vol. 100, pp. 1198–1206, May 2016, doi: 10.1016/J.APPLTHERMALENG.2016.02.108.
[11] H. Zhu, H. Tong, C. Cheng, and N. Liu, “Study on behaviors of tungsten powders in radio frequency thermal plasma,” Int. J. Refract. Met. Hard Mater., vol. 66, 2017, doi: 10.1016/j.ijrmhm.2017.01.017.
[12] C. Busse, I. Tsivilskiy, J. Hildebrand, and J. P. Bergmann, “Numerical modeling of an inductively coupled plasma torch using OpenFOAM,” Comput. Fluids, vol. 216, p. 104807, Feb. 2021, doi: 10.1016/J.COMPFLUID.2020.104807.
[13] Y. C. Lee, Y. P. Chyou, and E. Pfender, “Particle dynamics and particle heat and mass transfer in thermal plasmas. Part II. Particle heat and mass transfer in thermal plasmas,” Plasma Chem. Plasma Process., vol. 5, no. 4, p. 391, Dec. 1985, doi: 10.1007/bf00566011.
[14] A. Jankeviciute, Z. Károly, N. V. Tarakina, J. Szépvölgyi, and A. Kareiva, “Synthesis and characterization of spherical amorphous alumo-silicate nanoparticles using RF thermal plasma method,” J. Non. Cryst. Solids, vol. 359, no. 1, pp. 9–14, Jan. 2013, doi: 10.1016/j.jnoncrysol.2012.09.025.
[15] I. Mohai and J. Szépvölgyi, “Treatment of particulate metallurgical wastes in thermal plasmas,” Chem. Eng. Process. Process Intensif., vol. 44, no. 2, pp. 225–229, Feb. 2005, doi: 10.1016/j.cep.2004.04.008.
[16] D. V. Ivanov and S. G. Zverev, “Mathematical Simulation of Plasma Processes in a Radio Frequency Inductively Coupled Plasma Torch in ANSYS Fluent and COMSOL Multiphysics Software Packages,” IEEE Trans. Plasma Sci., vol. 50, no. 6, pp. 1700–1709, Jun. 2022, doi: 10.1109/TPS.2022.3175741.
[17] Y. Cheng, M. Shigeta, S. Choi, and T. Watanabe, “Formation mechanism of titanium boride nanoparticles by RF induction thermal plasma,” Chem. Eng. J., vol. 183, pp. 483–491, Feb. 2012, doi: 10.1016/j.cej.2011.12.040.
[18] N. Kobayashi et al., “Spherical submicron-size copper powders coagulated from a vapor phase in RF induction thermal plasma,” Thin Solid Films, vol. 516, no. 13, 2008, doi: 10.1016/j.tsf.2007.10.064.
[19] Z. Yan, M. Xiao, X. Mao, K. Khanlari, Q. Shi, and X. Liu, “Fabrication of spherical WC-Co powders by radio frequency inductively coupled plasma and a consequent heat treatment,” Powder Technol., vol. 385, pp. 160–169, Jun. 2021, doi: 10.1016/j.powtec.2021.02.075.
[20] J. Guo, X. Fan, R. Dolbec, S. Xue, J. Jurewicz, and M. Boulos, “Development of nanopowder synthesis using induction plasma,” Plasma Sci. Technol, vol. 12, no. 2, p. 188, 2010, doi: 10.1088/1009-0630/12/2/12.
[21] K. A. Khor, L. G. Yu, Y. Li, Z. L. Dong, and Z. A. Munir, “Spark plasma reaction sintering of ZrO2- mullite composites from plasma spheroidized zircon/alumina powders,” Mater. Sci. Eng. A, vol. 339, no. 1–2, 2003, doi: 10.1016/S0921-5093(02)00151-X.
[22] J. L. Xu, K. A. Khor, Y. W. Gu, R. Kumar, and P. Cheang, “Radio frequency (rf) plasma spheroidized HA powders: Powder characterization and spark plasma sintering behavior,” Biomaterials, vol. 26, no. 15, 2005, doi: 10.1016/j.biomaterials.2004.06.042.
[23] J. Hyesook, H. Chulwoong, K. Byungmoon, K. Dohyang, and C. Hanshin, “Interface activated sintering of tungsten by nano-particles in the spark plasma sintering,” in Reviews on Advanced Materials Science, 2011, vol. 28, no. 2.
[24] X. L. Jiang and M. Boulos, “Induction plasma spheroidization of tungsten and molybdenum powders,” Trans. Nonferrous Met. Soc. China (English Ed., vol. 16, no. 1, pp. 13–17, 2006, doi: 10.1016/S1003-6326(06)60003-4.
[25] R. Li et al., “Fabrication of fine-grained spherical tungsten powder by radio frequency (RF) inductively coupled plasma spheroidization combined with jet milling,” Adv. Powder Technol., vol. 28, no. 12, pp. 3158–3163, Dec. 2017, doi: 10.1016/j.apt.2017.09.019.
[26] E. YURTKURAN, W. K. W. SUNJUQ, A. ÖZSUNAR, and R. ÜNAL, “Plazma Ark Torçunda Gaz Akış Debisi ve Elektrik Akım Değerlerinin Gaz Çıkış Sıcaklığı ve Hızlarına Etkisinin HAD Analizi ile İncelenmesi,” Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Derg., vol. 33, no. 1, 2018, doi: 10.17341/gazimmfd.406807.
[27] E. YURTKURAN and R. ÜNAL, “Theoretical and experimental investigation of Tialloy powder production using low-power plasma torches[1] E. YURTKURAN and R. ÜNAL, ‘Theoretical and experimental investigation of Tialloy powder production using low-power plasma torches,’ Trans. Nonferrous,” Trans. Nonferrous Met. Soc. China (English Ed., vol. 32, no. 1, pp. 175–191, Jan. 2022, doi: 10.1016/S1003-6326(21)65786-2.
[28] K. S. Sista, A. P. Moon, G. R. Sinha, B. M. Pirjade, and S. Dwarapudi, “Spherical metal powders through RF plasma spherodization,” Powder Technol., vol. 400, p. 117225, Mar. 2022, doi: 10.1016/J.POWTEC.2022.117225.
[29] E. Yurtkuran and R. Ünal, “Numerical and Experimental Investigation on the Effects of a Nozzle Attachment to Plasma Torches for Plasma Atomization,” Plasma Chem. Plasma Process., vol. 40, no. 5, 2020, doi: 10.1007/s11090-020-10095-x.
[30] A. B. Murphy and D. Uhrlandt, “Foundations of High-Pressure Thermal Plasmas,” Plasma Sources Science and Technology, vol. 27, no. 6. 2018, doi: 10.1088/1361-6595/aabdce.
[31] Y. Cressault, A. B. Murphy, P. Teulet, A. Gleizes, and M. Schnick, “Thermal plasma properties for Ar-Cu, Ar-Fe and Ar-Al mixtures used in welding plasmas processes: II. Transport coefficients at atmospheric pressure,” J. Phys. D. Appl. Phys., vol. 46, no. 41, Oct. 2013, doi: 10.1088/0022-3727/46/41/415207.
[32] S. Xue, P. Proulx, and M. I. Boulos, “Extended-field electromagnetic model for inductively coupled plasma,” J. Phys. D. Appl. Phys., vol. 34, no. 12, pp. 1897–1906, Jun. 2001, doi: 10.1088/0022-3727/34/12/321.
[33] Z. Hao, Y. Chen, Q. Zhang, P. Wang, Y. Shu, and J. He, “Fabrication of spherical Ti-6Al-4V powder by RF plasma spheroidization combined with mechanical alloying and spray granulation,” Adv. Powder Technol., vol. 33, no. 1, Jan. 2022, doi: 10.1016/J.APT.2021.11.031.
[34] P. Sun, Z. Z. Fang, Y. Xia, Y. Zhang, and C. Zhou, “A novel method for production of spherical Ti-6Al-4V powder for additive manufacturing,” Powder Technol., vol. 301, p. 331, Nov. 2016, doi: 10.1016/j.powtec.2016.06.022.
[35] W. H. Wei, L. Z. Wang, T. Chen, X. M. Duan, and W. Li, “Study on the flow properties of Ti-6Al-4V powders prepared by radio-frequency plasma spheroidization,” Adv. Powder Technol., vol. 28, no. 9, pp. 2431–2437, Sep. 2017, doi: 10.1016/j.apt.2017.06.025.
[36] I. Gibson, D. W. Rosen, and B. Stucker, “Additive manufacturing technologies: Rapid prototyping to direct digital manufacturing,” Addit. Manuf. Technol. Rapid Prototyp. to Direct Digit. Manuf., pp. 1–459, 2010, doi: 10.1007/978-1-4419-1120-9.
[37] H. Zhang, L. Bai, P. Hu, F. Yuan, and J. Li, “Single-step pathway for the synthesis of tungsten nanosized powders by RF induction thermal plasma,” Int. J. Refract. Met. Hard Mater., vol. 31, pp. 33–38, Mar. 2012, doi: 10.1016/j.ijrmhm.2011.09.002.
[38] J. J. Wang, J. J. Hao, Z. M. Guo, and Y. M. Wang, “Preparation of spherical tungsten and titanium powders by RF induction plasma processing,” Rare Met., vol. 34, no. 6, 2015, doi: 10.1007/s12598-014-0293-4.
DOI: https://doi.org/10.24294/tse11772
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Rahmi Unal, İrfan Ünal, Murat Erbaş

This work is licensed under a Creative Commons Attribution 4.0 International License.

This site is licensed under a Creative Commons Attribution 4.0 International License.
