Emerging trends in manufacturing of micro and macro scale devices using metal iodide-based nanomaterials
Vol 8, Issue 1, 2025
Abstract
A fresh interest has been accorded to metal iodides due to their fascinating physicochemical properties such as high ionic conductivity, variable optical properties, and high thermal stabilities in making micro and macro devices. Breakthroughs in cathodic preparation and metallization of metal iodides revealed new opportunities for using these compounds in various fields, especially in energy conversion and materials with luminescent and sensory properties. In energy storage metal iodides are being looked at due to their potential to enhance battery performance, in optoelectronics the property of the metal iodides is available to create efficient LEDs and solar cells. Further, their application in sensing devices, especially in environmental and medical monitoring has been quite mentioned due to their response towards environmental changes such as heat or light. Nevertheless, some challenges are still in question, including material stability, scale-up opportunities, and compatibility with other technologies. This work highlights the groundbreaking potential of metal iodide-based nanomaterials, emphasizing their transformative role in innovation and their promise for future advancements.
Keywords
Full Text:
PDFReferences
1. Aslam H, Umar A, Nusrat N, et al. Nanomaterials in the treatment of degenerative intellectual and developmental disabilities. Exploration of BioMat-X. 2024. doi: 10.37349/ebmx.2024.00024
2. Patel MR, Singh PDD, Harshita, et al. Single crystal perovskites: Synthetic strategies, properties and applications in sensing, detectors, solar cells and energy storage devices. Coordination Chemistry Reviews. 2024; 519: 216105. doi: 10.1016/j.ccr.2024.216105
3. Zhang L, Guo H, Zong W, et al. Metal–iodine batteries: achievements, challenges, and future. Energy & Environmental Science. 2023; 16(11): 4872-4925. doi: 10.1039/d3ee01677c
4. Yu H, Wang Z, Zheng R, et al. Toward Sustainable Metal‐Iodine Batteries: Materials, Electrochemistry and Design Strategies. Angewandte Chemie. 2023; 135(46). doi: 10.1002/ange.202308397
5. Shetty SK, Ismayil, Nayak P, et al. Sodium iodide dopant mediated enhancements in energy storage characteristics of polysaccharide polymer electrolytes. Journal of Energy Storage. 2024; 95: 112553. doi: 10.1016/j.est.2024.112553
6. Han K, Jin J, Zhou X, et al. Narrow‐Band Green‐Emitting Hybrid Organic–Inorganic Eu (II)‐Iodides for Next‐Generation Micro‐LED Displays. Advanced Materials. 2024; 36(21). doi: 10.1002/adma.202313247
7. Qi JL, Wu J, Yan SF, et al. Cluster-Centered Excited-State-Induced Bright Low-Energy Emissive Hybrid Copper Iodide Constructing Stable White LEDs. Inorganic Chemistry. 2023; 62(46): 18825-18829. doi: 10.1021/acs.inorgchem.3c03608
8. Kim K, Yoo JI, Kim HB, et al. Highly efficient tandem organic light-emitting diodes using p-type metal halide copper iodide (CuI). Journal of Information Display. 2023; 25(3): 235-242. doi: 10.1080/15980316.2023.2272561
9. Meng X, Jiang J, Yang X, et al. Organic‐Inorganic Hybrid Cuprous‐Based Metal Halides with Unique Two‐Dimensional Crystal Structure for White Light‐Emitting Diodes. Angewandte Chemie International Edition. 2024. doi: 10.1002/anie.202411047
10. Zhang K, She Y, Cai X, et al. Epitaxial substitution of metal iodides for low-temperature growth of two-dimensional metal chalcogenides. Nature Nanotechnology. 2023; 18(5): 448-455. doi: 10.1038/s41565-023-01326-1
11. Uddin MA, Rana PJS, Ni Z, et al. Iodide manipulation using zinc additives for efficient perovskite solar minimodules. Nature Communications. 2024; 15(1). doi: 10.1038/s41467-024-45649-6
12. Sheng W, He J, Yang J, et al. Multifunctional Metal‐Organic Frameworks Capsules Modulate Reactivity of Lead Iodide toward Efficient Perovskite Solar Cells with UV Resistance. Advanced Materials. 2023; 35(33). doi: 10.1002/adma.202301852
13. Aslam H, Nusrat N, Mansour M, et al. Photonic silver iodide nanostructures for optical biosensors. Exploration of BioMat-X. 2024: 366-379. doi: 10.37349/ebmx.2024.00025
14. Srivastava A, Satrughna JAK, Tiwari MK, et al. Lead metal halide perovskite solar cells: Fabrication, advancement strategies, alternatives, and future perspectives. Materials Today Communications. 2023; 35: 105686. doi: 10.1016/j.mtcomm.2023.105686
15. Li J, Dagar J, Shargaieva O, et al. Ink Design Enabling Slot‐Die Coated Perovskite Solar Cells with >22% Power Conversion Efficiency, Micro‐Modules, and 1 Year of Outdoor Performance Evaluation. Advanced Energy Materials. 2023; 13(33). doi: 10.1002/aenm.202203898
16. Khorasani A, Mohamadkhani F, Marandi M, et al. Opportunities, Challenges, and Strategies for Scalable Deposition of Metal Halide Perovskite Solar Cells and Modules. Advanced Energy and Sustainability Research. 2024; 5(7). doi: 10.1002/aesr.202470017
17. Yang M, Nie Z, Li X, et al. Advances of metal halide perovskite large-size single crystals in photodetectors: from crystal materials to growth techniques. Journal of Materials Chemistry C. 2023; 11(18): 5908-5967. doi: 10.1039/d2tc04913a
18. Gu Z, Zhang Y, Zhao Y, et al. From planar structures to curved optoelectronic devices: The advances of halide perovskite arrays. Matter. 2023; 6(9): 2666-2696. doi: 10.1016/j.matt.2023.05.007
19. Zhong Y, Liu Z, Luo X, et al. Macro–micro coordination optimization of lead iodide reactivity toward millimeter-to-centimeter-scale perovskite solar cells with minimal efficiency loss. Energy & Environmental Science. 2024; 17(15): 5500-5512. doi: 10.1039/d4ee01371a
20. Doherty TAS, Stranks SD. Multimodal Characterization of Halide Perovskites: From the Macro to the Atomic Scale. Halide Perovskite Semiconductors. 2023. doi: 10.1002/9783527829026.ch16
21. Sheng Y, Wen X, Jia B, et al. Direct laser writing on halide perovskites: from mechanisms to applications. Light: Advanced Manufacturing. 2024; 4(1): 1. doi: 10.37188/lam.2024.004
22. Palewicz M, Sikora A, Piasecki T, et al. Determination of the Electrical Parameters of Iodine-Doped Polymer Solar Cells at the Macro- and Nanoscale for Indoor Applications. Energies. 2023; 16(12): 4741. doi: 10.3390/en16124741
23. Liu T, Zhao Y, Song M, et al. Ordered Macro–Microporous Single Crystals of Covalent Organic Frameworks with Efficient Sorption of Iodine. Journal of the American Chemical Society. 2023; 145(4): 2544-2552. doi: 10.1021/jacs.2c12284
24. Hao D, Yang Z, Huang J, et al. Recent Developments of Optoelectronic Synaptic Devices Based on Metal Halide Perovskites. Advanced Functional Materials. 2022; 33(8). doi: 10.1002/adfm.202211467
25. Wei X, Bai Y, Chen Q. Fabrication and Modification Strategies of Metal Halide Perovskite Absorbers. Journal of Renewable Materials. 2023; 11(1): 61-77. doi: 10.32604/jrm.2023.022773
26. Zhu Y, Lv P, Hu M, et al. Synergetic Passivation of Metal‐Halide Perovskite with Fluorinated Phenmethylammonium toward Efficient Solar Cells and Modules. Advanced Energy Materials. 2022; 13(8). doi: 10.1002/aenm.202203681
27. Chen L, He M, Gong W, et al. Robust salt-shelled metal halide for highly efficient photoluminescence and wearable real-time human motion perception. Nano Energy. 2023; 108: 108235. doi: 10.1016/j.nanoen.2023.108235
28. Dong H, Ran C, Gao W, et al. Metal Halide Perovskite for next-generation optoelectronics: progresses and prospects. eLight. 2023; 3(1). doi: 10.1186/s43593-022-00033-z
29. Darekar MS, Beekanahalli Mokshanatha P. Chemical synthesis of Lead Iodide nanoparticles for photovoltaic and optoelectronic device applications. International Journal of Nano Dimension. 2024.
30. Dey K, Ghosh D, Pilot M, et al. Substitution of lead with tin suppresses ionic transport in halide perovskite optoelectronics. Energy & Environmental Science. 2024; 17(2): 760-769. doi: 10.1039/d3ee03772j
31. Zhong J, Zhou D, Bai Q, et al. Growth of millimeter-sized 2D metal iodide crystals induced by ion-specific preference at water-air interfaces. Nature Communications. 2024; 15(1). doi: 10.1038/s41467-024-47241-4
32. Getachew G, Wibrianto A, Rasal AS, et al. Metal halide perovskite nanocrystals for biomedical engineering: Recent advances, challenges, and future perspectives. Coordination Chemistry Reviews. 2023; 482: 215073. doi: 10.1016/j.ccr.2023.215073
33. Li H, Li J, Shen N, et al. Progress and challenges of metal halide perovskites in X-ray detection and imaging. Nano Energy. 2024; 119: 109055. doi: 10.1016/j.nanoen.2023.109055
34. Salem MAS, Khan AM, Manea YK, et al. Highly efficient iodine capture and ultrafast fluorescent detection of heavy metals using PANI/LDH@CNT nanocomposite. Journal of Hazardous Materials. 2023; 447: 130732. doi: 10.1016/j.jhazmat.2023.130732
35. Liu Z, Qin X, Chen Q, et al. Metal–Halide Perovskite Nanocrystal Superlattice: Self‐Assembly and Optical Fingerprints. Advanced Materials. 2023; 35(16). doi: 10.1002/adma.202209279
36. Ghosh J, Parveen S, Sellin PJ, et al. Recent Advances and Opportunities in Low‐Dimensional Layered Perovskites for Emergent Applications beyond Photovoltaics. Advanced Materials Technologies. 2023; 8(17). doi: 10.1002/admt.202300400
37. Hwang I. Challenges in Controlling the Crystallization Pathways and Kinetics for Highly Reproducible Solution-Processing of Metal Halide Perovskites. The Journal of Physical Chemistry C. 2023; 127(50): 24011-24026. doi: 10.1021/acs.jpcc.3c05787
38. Shen X, Kang K, Yu Z, et al. Passivation strategies for mitigating defect challenges in halide perovskite light-emitting diodes. Joule. 2023; 7(2): 272-308. doi: 10.1016/j.joule.2023.01.008
39. Chu QQ, Sun Z, Hah J, et al. Progress, challenges, and further trends of all perovskites tandem solar cells: A comprehensive review. Materials Today. 2023; 67: 399-423. doi: 10.1016/j.mattod.2023.06.002
40. Baig N. Two-dimensional nanomaterials: A critical review of recent progress, properties, applications, and future directions. Composites Part A: Applied Science and Manufacturing. 2023; 165: 107362. doi: 10.1016/j.compositesa.2022.107362
DOI: https://doi.org/10.24294/tse11162
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Author(s)
License URL: https://creativecommons.org/licenses/by/4.0/
This site is licensed under a Creative Commons Attribution 4.0 International License.