Comparative analysis of the WRKY gene family reveals the gene family expansion and evolution in diverse plant species
Vol 7, Issue 2, 2024
(Abstract)
Abstract
The WRKY gene family plays a very diverse role in plant growth and development. These genes contained an evolutionarily conserved WRKY DNA binding domain, which shows functional diversity and extensive expansion of the gene family. In this study, we conducted a genome-wide comparative analysis to investigate the evolutionary aspects of the WRKY gene family across various plant species and revealed significant expansion and diversification ranging from aquatic green algae to terrestrial plants. Phylogeny reconstruction of WRKY genes was performed using the Maximum Likelihood (ML) method; the genes were grouped into seven different clades and further classified into algae, bryophytes, pteridophytes, dicotyledons, and monocotyledons subgroups. Furthermore, duplication analysis showed that the increase in the number of WRKY genes in higher plant species was primarily due to tandem and segmental duplication under purifying selection. In addition, the selection pressures of different subfamilies of the WRKY gene were investigated using different strategies (classical and Bayesian maximum likelihood methods (Data monkey/PAML)). The average dN/dS for each group are less than one, indicating purifying selection. Our comparative genomic analysis provides the basis for future functional analysis, understanding the role of gene duplication in gene family expansion, and selection pressure analysis.
Keywords
Full Text:
PDFReferences
1. Rejeb I, Pastor V, Mauch-Mani B. Plant Responses to Simultaneous Biotic and Abiotic Stress: Molecular Mechanisms. Plants. 2014; 3(4): 458-475. doi: 10.3390/plants3040458
2. Phukan UJ, Jeena GS, Shukla RK. WRKY Transcription Factors: Molecular Regulation and Stress Responses in Plants. Frontiers in Plant Science. 2016; 7. doi: 10.3389/fpls.2016.00760
3. Bakshi M, Oelmüller R. WRKY transcription factors. Plant Signaling & Behavior. 2014; 9(2): e27700. doi: 10.4161/psb.27700
4. Ishiguro S, Nakamura K. Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5′ upstream regions of genes coding for sporamin and β-amylase from sweet potato. Molecular and General Genetics MGG. 1994; 244(6): 563-571. doi: 10.1007/bf00282746
5. Rushton PJ, Macdonald H, Huttly AK, et al. Members of a new family of DNA-binding proteins bind to a conserved cis-element in the promoters of ?-Amy2 genes. Plant Molecular Biology. 1995; 29(4): 691-702. doi: 10.1007/bf00041160
6. Rushton PJ, Somssich IE, Ringler P, et al. WRKY transcription factors. Trends in Plant Science. 2010; 15(5): 247-258. doi: 10.1016/j.tplants.2010.02.006
7. Eulgem T, Rushton PJ, Robatzek S, et al. The WRKY superfamily of plant transcription factors. Trends in Plant Science 2000; 5(5): 199-206. doi: 10.1016/s1360-1385(00)01600-9
8. Jiang J, Ma S, Ye N, et al. WRKY transcription factors in plant responses to stresses. Journal of Integrative Plant Biology. 2017; 59(2): 86-101. doi: 10.1111/jipb.12513
9. QIU Y. Cloning and analysis of expression profile of 13 WRKY genes in rice. Chinese Science Bulletin. 2004; 49(20): 2159. doi: 10.1360/982004-183
10. Wu H, Ni Z, Yao Y, et al. Cloning and expression profiles of 15 genes encoding WRKY transcription factor in wheat (Triticum aestivem L.). Progress in Natural Science. 2008; 18(6): 697-705. doi: 10.1016/j.pnsc.2007.12.006
11. Zhou Q, Tian A, Zou H, et al. Soybean WRKY‐type transcription factor genes,GmWRKY13, GmWRKY21, andGmWRKY54, confer differential tolerance to abiotic stresses in transgenicArabidopsisplants. Plant Biotechnology Journal. 2008; 6(5): 486-503. doi: 10.1111/j.1467-7652.2008.00336.x
12. Hofmann MG, Sinha AK, Proels RK, et al. Cloning and characterization of a novel LpWRKY1 transcription factor in tomato. Plant Physiology and Biochemistry. 2008; 46(5-6): 533-540. doi: 10.1016/j.plaphy.2008.02.009
13. Agarwal P, Dabi M, Agarwal PK. Molecular Cloning and Characterization of a Group II WRKY Transcription Factor fromJatropha curcas, an Important Biofuel Crop. DNA and Cell Biology. 2014; 33(8): 503-513. doi: 10.1089/dna.2014.2349
14. Jiang W, Yu D. Arabidopsis WRKY2 transcription factor mediates seed germination and postgermination arrest of development by abscisic acid. BMC Plant Biology. 2009; 9(1): 96. doi: 10.1186/1471-2229-9-96
15. Chen J, Nolan T, Ye H, et al. Arabidopsis WRKY46, WRKY54 and WRKY70 Transcription Factors Are Involved in Brassinosteroid-Regulated Plant Growth and Drought Response. The Plant Cell. Published online June 2, 2017: tpc.00364.2017. doi: 10.1105/tpc.17.00364
16. Wang H, Avci U, Nakashima J, et al. Mutation of WRKY transcription factors initiates pith secondary wall formation and increases stem biomass in dicotyledonous plants. Proceedings of the National Academy of Sciences. 2010; 107(51): 22338-22343. doi: 10.1073/pnas.1016436107
17. Johnson CS, Kolevski B, Smyth DR. Transparent testa glabra2, a Trichome and Seed Coat Development Gene of Arabidopsis, Encodes a WRKY Transcription Factor. The Plant Cell. 2002; 14(6): 1359-1375. doi: 10.1105/tpc.001404
18. Zhang CQ, Xu Y, Lu Y, et al. The WRKY transcription factor OsWRKY78 regulates stem elongation and seed development in rice. Planta. 2011; 234(3): 541-554. doi: 10.1007/s00425-011-1423-y
19. Xiang J, Tang S, Zhi H, et al. Loose Panicle1 encoding a novel WRKY transcription factor, regulates panicle development, stem elongation, and seed size in foxtail millet [Setaria italica (L.) P. Beauv.]. PLOS ONE. 2017; 12(6): e0178730. doi: 10.1371/journal.pone.0178730
20. Miao Y, Laun T, Zimmermann P, et al. Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis. Plant Molecular Biology. 2004; 55(6): 853-867. doi: 10.1007/s11103-005-2142-1
21. Liu H, Sun M, Du D, et al. Whole-Transcriptome Analysis of Differentially Expressed Genes in the Vegetative Buds, Floral Buds and Buds of Chrysanthemum morifolium. PLOS ONE. 2015; 10(5): e0128009. doi: 10.1371/journal.pone.0128009
22. Chen L, Zhang L, Li D, et al. WRKY8 transcription factor functions in the TMV-cg defense response by mediating both abscisic acid and ethylene signaling in Arabidopsis. Proceedings of the National Academy of Sciences. 2013; 110(21). doi: 10.1073/pnas.1221347110
23. Ren X, Chen Z, Liu Y, et al. ABO3, a WRKY transcription factor, mediates plant responses to abscisic acid and drought tolerance in Arabidopsis. The Plant Journal. 2010; 63(3): 417-429. doi: 10.1111/j.1365-313x.2010.04248.x
24. Wu ZJ, Li XH, Liu ZW, et al. Transcriptome-wide identification of Camellia sinensis WRKY transcription factors in response to temperature stress. Molecular Genetics and Genomics. 2015; 291(1): 255-269. doi: 10.1007/s00438-015-1107-6
25. Chen L, Yang Y, Liu C, et al. Characterization of WRKY transcription factors in Solanum lycopersicum reveals collinearity and their expression patterns under cold treatment. Biochemical and Biophysical Research Communications. 2015; 464(3): 962-968. doi: 10.1016/j.bbrc.2015.07.085
26. Wu J, Chen J, Wang L, et al. Genome-Wide Investigation of WRKY Transcription Factors Involved in Terminal Drought Stress Response in Common Bean. Frontiers in Plant Science. 2017; 8. doi: 10.3389/fpls.2017.00380
27. Singh A, Singh PK, Sharma AK, et al. Understanding the Role of the WRKY Gene Family under Stress Conditions in Pigeonpea (Cajanus Cajan L.). Plants. 2019; 8(7): 214. doi: 10.3390/plants8070214
28. Deslandes L, Olivier J, Theulières F, et al. Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRS1-R gene, a member of a novel family of resistance genes. Proceedings of the National Academy of Sciences. 2002; 99(4): 2404-2409. doi: 10.1073/pnas.032485099
29. Zheng Z, Qamar SA, Chen Z, et al. Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. The Plant Journal. 2006; 48(4): 592-605. doi: 10.1111/j.1365-313x.2006.02901.x
30. Yang Y, Zhou Y, Chi Y, et al. Characterization of Soybean WRKY Gene Family and Identification of Soybean WRKY Genes that Promote Resistance to Soybean Cyst Nematode. Scientific Reports. 2017; 7(1). doi: 10.1038/s41598-017-18235-8
31. Huh SU, Choi LM, Lee GJ, et al. Capsicum annuum WRKY transcription factor d (CaWRKYd) regulates hypersensitive response and defense response upon Tobacco mosaic virus infection. Plant Science. 2012; 197: 50-58. doi: 10.1016/j.plantsci.2012.08.013
32. Li P, Song A, Gao C, et al. The over-expression of a chrysanthemum WRKY transcription factor enhances aphid resistance. Plant Physiology and Biochemistry. 2015; 95: 26-34. doi: 10.1016/j.plaphy.2015.07.002
33. Eddy SR. Profile hidden Markov models. Bioinformatics. 1998; 14(9): 755-763. doi: 10.1093/bioinformatics/14.9.755
34. Larkin MA, Blackshields G, Brown NP, et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007; 23(21): 2947-2948. doi: 10.1093/bioinformatics/btm404
35. Tamura K, Stecher G, Peterson D, et al. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution. 2013; 30(12): 2725-2729. doi: 10.1093/molbev/mst197
36. Wang Y, Tang H, DeBarry JD, et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research. 2012; 40(7): e49-e49. doi: 10.1093/nar/gkr1293
37. Patil G, Valliyodan B, Deshmukh R, et al. Soybean (Glycine max) SWEET gene family: insights through comparative genomics, transcriptome profiling and whole genome re-sequence analysis. BMC Genomics. 2015; 16(1). doi: 10.1186/s12864-015-1730-y
38. Suyama M, Torrents D, Bork P. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Research. 2006; 34(Web Server): W609-W612. doi: 10.1093/nar/gkl315
39. Vanneste K, Van de Peer Y, Maere S. Inference of Genome Duplications from Age Distributions Revisited. Molecular Biology and Evolution. 2012; 30(1): 177-190. doi: 10.1093/molbev/mss214
40. Rensing SA, Ick J, Fawcett JA, et al. An ancient genome duplication contributed to the abundance of metabolic genes in the moss Physcomitrella patens. BMC Evolutionary Biology. 2007; 7(1): 130. doi: 10.1186/1471-2148-7-130
41. Albert VA, Barbazuk WB, et al. The Amborella Genome and the Evolution of Flowering Plants. Science. 2013; 342(6165). doi: 10.1126/science.1241089
42. Banks JA, Nishiyama T, Hasebe M, et al. The Selaginella Genome Identifies Genetic Changes Associated with the Evolution of Vascular Plants. Science. 2011; 332(6032): 960-963. doi: 10.1126/science.1203810
43. Ning P, Liu C, Kang J, et al. Genome-wide analysis of WRKY transcription factors in wheat (Triticum aestivum L.) and differential expression under water deficit condition. PeerJ. 2017; 5: e3232. doi: 10.7717/peerj.3232
DOI: https://doi.org/10.24294/th.v7i2.5483
Refbacks
- There are currently no refbacks.
License URL: https://creativecommons.org/licenses/by/4.0/
This site is licensed under a Creative Commons Attribution 4.0 International License.