Evaluation of carbon capture in coffee production systems in the department of Nariño

Juan Pablo Manchabajoy Cañar, Danita Andrade Díaz, Álvaro José Castillo Marín

Article ID: 1832
Vol 5, Issue 2, 2022

VIEWS - 366 (Abstract) 340 (PDF)

Abstract


One of the biggest environmental problems that has affected the planet is global warming, due to high concentrations of carbon (CO2), which has led to crops such as coffee being affected by climate change caused by greenhouse gases (GHG), especially by the increase in the incidence of pests and diseases. However, carbon sequestration contributes to the mitigation of GHG emissions. The objective of this work was to evaluate the carbon stored in above and below ground biomass in four six-year-old castle coffee production systems. In a trial established under a Randomized Complete Block Design (RCBD) with the treatments Coffee at free exposure (T1), Coffee-Lemon (T2), Coffee-Guamo (T3) and Coffee-Carbonero (T4), at three altitudes: below 1,550 masl, between 1,550 and 2,000 masl and above 2,000 masl. Data were collected corresponding to the stem diameters of coffee seedlings and shade trees with which allometric equations were applied to obtain the carbon variables in the aerial biomass and root and the carbon variables in leaf litter and soil obtained from their dry matter. Highly significant differences were obtained in the four treatments evaluated, with T4 being the one that obtained the highest carbon concentration both in soil biomass with 100.14 t ha-1 and in aerial biomass with 190.42 t ha-1.


Keywords


Biomass; CO2; Allometric Equation; Production Systems; Greenhouse Effect

Full Text:

PDF


References


1. Patiño S, Suárez L, Andrade H, et al. Capture of carbon in biomass in forestry plantations and agroforestry system in Armero-Guayabal, Tolima, Colombia. Revista de Investigación Agraria y Ambiental 2018; 9(2): 121–134.

2. Ramachandran N, Nair V. ‘Solid–fluid–gas’: The state of knowledge on carbon-sequestration potential of agroforestry systems in Africa. Current Opinion in Environmental Sustainability 2014; 6(1): 22–27.

3. Farfán F. Arboles con potencial para ser incorporados en sistemas agroforestales con café (Spanish) [Trees with potential to be incorporated into agroforestry systems with coffee]. Chinchiná (Colombia): Centro Nacional de Investigaciones de Café-Cenicafé; 2012. p. 88.

4. Organización de las Naciones Unidas para la Alimentación y la Agricultura. El estado de los bosques del mundo 2016 (Spanish) [The state of the world’s forests 2016]. Los bosques y la agricultura: desafíos y oportunidades en relación con el uso de la tierra. Roma: FAO; 2016. p. 137.

5. Matta, Y. Perez YM. Exportaciones de Colombia (Spanish) [Colombian exports]. Expresiones, Revista Estudiantil de Investigación 2017; 4(8): 71–75.

6. De Beenhouwer M, Geeraert L, Mertens J, et al. Biodiversity and carbon storage co-benefits of coffee agroforestry across a gradient of increasing management intensity in the SW Ethiopian highlands. Agriculture, Ecosystems & Environment 2016; 222: 193–199.

7. Castro R. Almacenamiento de carbono y análisis de rentabilidad en sistemas agroforestales con Coffea arabica (L.) en la zona de los Santos, Costa Rica (Spanish) [Carbon storage and profitability analysis in agroforestry systems with Coffea arabica (L.) in the Los Santos area, Costa Rica] [Internet]. 2017. Available from: https://repositoriotec.tec.ac.cr/bitstream/handle/2238/9395/almacenamiento_carbono_analisis_rentabilidad_sistemas.pdf?sequence=1&isAllowed=y

8. Motta-Delgado PA, Ocaña-Martínez HE. Characterization of sub-systems of Brachiaria grassland in herds from humid tropic, Caquetá, Colombia. Ciencia y Agricultura 2018; 15(1): 81–92.

9. Montagnini F, Somarriba E, Fassola H, et al. Sistemas agroforestales: funciones productivas, socioeconómicas y ambientales (Spanish) [Agroforestry systems: Productive, socioeconomic and environmental functions]. Serie técnica. Informe técnico 402. CATIE, Turrialba, Costa Rica. Cali, Colombia: Editorial CIPAV; 2015. p. 454.

10. Peng S, Piao S, Wang T, et al. Temperature sensitivity of soil respiration in different ecosystems in China. Soil Biology and Biochemistry 2009; 41(5): 1008–1014.

11. de Carvalho Gomes L, Cardoso IM, de Sá Mendonça E, et al. Trees modify the dynamics of soil CO2 efflux in coffee agroforestry systems. Agricultural and Forest Meteorology 2016; 224(1): 30–39. doi: 10.1016/j.agrformet.2016.05.001.

12. Isaza C. Análisis de oportunidades para la gestión eficiente del carbono en un sistema de producción de café en el departamento de Caldas (Spanish) [Analysis of opportunities for efficient carbon management in a coffee production system in the department of Caldas] [Internet]. 2014. Available from: http://ridum.umanizales.edu.co:8080/xmlui/handle/6789/1837.

13. Jurado M, Ordoñez H, Ballesteros W, et al. Evaluación de captura de carbono en sistemas productivos de café (Coffea arabica L.), Consacá, Nariño-Colombia (Spanish) [Evaluation of carbon sequestration in coffee production systems (Coffea arabica L.), Consacá, Nariño-Colombia]. Pasto, Nariño: Universidad de Nariño, Facultad de Ciencias Agrícolas; 2019.

14. CORPONARIÑO (2008). Diagnostico biofísico y socioeconómico municipio de Sandoná. (Spanish) [Biophysical and socioeconomic diagnosis in the municipality of Sandoná] [Internet]. Available from: https://corponarino.gov.co/expedientes/intervencion/DIAGNOSTICO%20BIOFISICO%20SOCIO%20ECONOMICA%20DE%20SANDONA.pdf.

15. Segura M, Andrade H. How to develop biomass models of woody perennials species. Revista Agroforesteria en las Américas (CATIE) 2008; 46: 89–96.

16. Quilio A, Castellanos E, Pons D. Estudio de línea base de carbono en cafetales (Spanish) [Baseline study of carbon in coffee plantations]. Guatemala: Universidad del Valle de Guatemala (UVG); 2010. p. 48.

17. Álvarez E, Saldarriaga JG, Duque AJ, et al. Selección y validación de modelos para la estimación de la biomasa aérea en los bosques naturales de Colombia (Spanish) [Selection and validation of models for the estimation of aerial biomass in the natural forests of Colombia]. Bogotá DC, Colombia: Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM); 2011. p. 26.

18. Panel Intergubernamental de Expertos sobre el Cambio Climático (IPCC). Good practice guidance for land use, land-use change and forestry. Japan: Institute for Global Environmental Strategies (IGES); 2003. p. 90.

19. Rügnitz M, Chacón M, Porro R. Guía para la determinación de carbono en pequeñas propiedades rurales (Spanish) [Guide for the determination of carbon in small rural properties]. Lima, Perú: Centro Mundial Agroflorestal (ICRAF). Iowa: Consórcio Iniciativa Amazônica (IA); 2009. p. 79.

20. Castellanos E, Quilo A, Mato R. Metodología para la estimación del contenido de carbono en bosques y sistemas agroforestales de Guatemala, Guatemala. Centro de Estudios Ambientales y de Biodiversidad de la Universidad del Valle de Guatemala (CEAB-UVG) y CARE (Spanish) [Methodology for estimating carbon content in forests and agroforestry systems in Guatemala, Guatemala] [Internet]. 2010. Available from: http://www.uvg.edu.gt/investigacion/ceab/cea/doc/metodologias/Metodolog%C3%ADa_Estimaci% C3%B3n%20de%20Carbono-espa%C3%B1ol_CEAB-UVG%202010.pdf.

21. Walkley A, Black IA. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science 1934; 37(1): 29–38.

22. López, K. Determinación de la disponibilidad de carbono según la tipificación de los sistemas agroforestales de café en las sub cuencas del río Yuracyacu y Yanayac, Perú (Spanish) [Determination of carbon availability according to the typification of coffee agroforestry systems in the sub-basins of the Yuracyacu and Yanayac rivers, Peru] [Master’s thesis]. Moyobamba, Perú: Universidad Nacional de San Martin; 2014. p. 99.

23. Kim DG, Thomas AD, Pelster D, et al. Greenhouse gas emissions from natural ecosystems and agricultural lands in sub-Saharan Africa: synthesis of available data and suggestions for further research. Biogeosciences 2016; 13(16): 4789–4809.

24. Hernández J, Riaño N, Riaño A, et al. Determination of the carbon footprint in the dry coffee parchment production system of four municipalities of the south of the department of Huila (Colombia). Revista de Investigacion Agraria y Ambiental 2018; 9(2): 109–120.

25. Cabrera M, Vaca S, Aguirre E et al. Carbon storage in coffee agroforestry systems in the provinces of Jaen and San Ignacio, Cajamarca. Revista Científica Pakamuros 2016; 4(1): 43–54.

26. Hergoualch K, Blanchart E, Skiba U, et al. Changes in carbon stock and greenhouse gas balance in a coffee (Coffea arabica) monoculture versus an agroforestry system with Inga densiflora, in Costa Rica. Agriculture, Ecosystems & Environment 2012; 148: 102–110.

27. Toensmeier E. Prácticas agrícolas que secuestran carbono: fortaleciendo los suelos y estabilizando el clima (Spanish) [Agricultural practices that sequester carbon: Strengthening soils and stabilizing the climate]. North Fort Myers: ECHO Community; 2015. p. 11.

28. Bonilla C, Díaz J, Girin, K, et al. Dinámica de la descomposición de residuos orgánicos. Suelos Ecuatoriales 2020; 50(1–2): 31–39. doi: 10.47864/SE(50)2020p31-39_123.

29. Valenzuela IG, Visconti EF. Influence of climate, soil use and soil depth on soil organic carbon content at two Andean altitudinal sites in Norte de Santander, Colombia. Revista Colombiana de Ciencias Hortícolas 2018; 12(1): 233–243. doi: 10.17584/rcch.2018v12i1.7349.

30. Andrade HJ, Segura MA. Carbon footprints in the coffee (Coffea arabica L.) productive chains with different certification standards in Costa Rica. Luna Azul 2012; (35): 60–77.

31. Vásquez E, Campos G, Enríquez J, et al. Carbon sequestration by Inga jinicuil Schltdl. In a shadow coffee agroforestry system. Revista Mexicana de Ciencias Forestales 2012; 3(9): 11–21.

32. Criollo H, Muñoz J, Lagos T. Modelos alométricos para biomasa y carbono de Albizia carbonaria durante la fase de crecimiento vegetativo (Spanish) [Allometric models for biomass and carbon of Albizia carbonaria during the vegetative growth phase]. Revista Ciencia y Agricultura 2020; 17(3): 95–110. doi: 10.19053/01228420.v17.n3.2020.11384.

33. Carvajal M, Mota C, Alcaraz-López C, et al. Investigación sobre la absorción de CO2 por los cultivos más representativos de la región de Murcia (Spanish) [Research on the absorption of CO2 by the most representative crops in the region of Murcia]. Madrid: Consejo Superior de Investigaciones Científicas (CSIC); 2009.

34. Odar B. Evaluación de almacenamiento de carbono en sistemas agroforestales de café (Coffea spp.) en el anexo de vilaya, distrito de colcamar, provincia de luya, amazonas (Spanish) [Evaluation of carbon storage in agroforestry systems of coffee (Coffea spp.) in the Vilaya annex, Colcamar district, Luya province, Amazonas] [Master’s thesis]. Chachapoyas, Perú: Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas; 2018. p. 31.

35. Díaz P, Ruiz G, Tello C, et al. Carbon stock in five land use systems in the region of San Martin, Perú. Revista Intenacional de Desarrollo Regional Sustentable 2016; 1(2): 57–67.

36. Stokes A, Norris JE, Van Beek LPH, et al. How vegetation reinforces soil on slopes. In: Slope stability and erosion control: Ecotechnological solutions. Dordrecht: Springer; 2008. p. 65–118.

37. Katayama A, Kume T, Komatsu H, et al. Effect of forest structure on the spatial variation in soil respiration in a Bornean tropical rainforest. Agricultural and Forest Meteorology 2009; 149(10): 1666–1673. doi: 10.1016/j.agrformet.2009.05.007.

38. Balaba S, Byakagaba P. Soil organic carbon stocks under coffee agroforestry systems and coffee monoculture in Uganda. Agriculture, Ecosystems & Environment 2016; 216: 188–193.

39. Thomazini A, Mendonça ES, Teixeira DB, et al. CO2 and N2O emissions in a soil chronosequence at a glacier retreat zone in Maritime Antarctica. Science of the Total Environment 2015; 521: 336–345.

40. Caviglia OP, Wingeyer AB, Novelli LE. El rol de los suelos agrícolas frente al cambio climático (Spanish) [The role of agricultural soils in the face of climate change]. Serie de Extensión INTA Paraná 2016; 78(1): 27–32.

41. Espinoza W, Vázquez A, Torres A, et al. Carbon stocks in agroforestry systems with coffee plantations. Revista Chapingo serie Ciencias Forestales y del Ambiente 2012; 18(1): 57–70. doi: 10.5154/r.rchscfa.2011.04.030.

42. Ávila G, Jiménez F, Beer J, et al. Carbon storage and fixation, and valuation of environmentalservices in agroforestry systems in Costa Rica. Agroforestería en las Américas 2019; 8(30): 32–35.

43. Ibrahim M, Mora J, Rosales M. Potencialidades de los sistemas silvopastoriles para la generación de servicios ambientales (Spanish) [Potentialities of silvopastoral systems for the generation of environmental services]. Turrialba, Costa: CATIE; 2006. p. 10.

44. Gómez V, Oviedo S. Estudio sobre fijación de carbono en plantaciones de Pinus ocarpa, de 11 años de edad en Quinta Buenos Aires, Estelí y Aurora (Spanish) [Study on carbon sequestration in 11-year-old Pinus oocarpa plantations in Quinta Buenos Aires, Esteli and Aurora]. Managua, Nicaragua: UNA; 2000. p. 57.




DOI: https://doi.org/10.24294/th.v5i2.1832

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This site is licensed under a Creative Commons Attribution 4.0 International License.