Increase in okra production with the addition of nitrogen

Valdilene Coutinho-Miranda, Irais Dolores Pascual-Reyes, Aline Torquato-Tavares, João Victor Gonçalves-Carline, Kássio Abel Silva-Sousa, Ildon Rodrigues-do-Nascimento

Article ID: 1813
Vol 5, Issue 1, 2022

VIEWS - 339 (Abstract) 310 (PDF)

Abstract


Introduction: Growth, yield and quality of okra (Abelmoschus esculentus (L.) Moench) are related to fertilizer application, being nitrogen (N) the most outstanding, due to its direct relationship with photosynthesis and vegetative growth of the plant. Objective: The objective was to evaluate the agronomic and productivity characteristics of okra as a function of N dose. Materials and methods: The study was conducted at the experimental area of Campus Gurupi, the Universidad Federal de Tocantins (UFT), Brazil, in two planting periods (autumn/winter and spring/summer). The experimental design used was randomized block design (RBD) with six treatments (50, 100, 150, 150, 200 and 250 kg N ha-1) and four replications. Urea was used as a source of N. The characteristics evaluated were: productivity, average fruit mass, height and plant chlorophyll index. Results: Productivity and plant height were superior in the fall/winter crop. Mean fruit mass and chlorophyll index were not influenced by planting time. For productivity, a linear response was obtained with increasing dose up to the limit of the N dose used (250 kg ha-1), with a mean value higher than 14 t of fruit. Mean mass and plant height responded linearly to increasing N dose. Nitrogen affected the chlorophyll index, with maximum values of 45.96 and 47.19, observed in the two evaluation periods. Conclusion: Planting time and N content in the soil interacted with plant height, being favorable in the period without precipitation. N influenced all the characteristics, demonstrating the importance of nitrogen fertilization in the development of okra plants.


Keywords


Abelmoschus Esculentus; Sowing; Nitrogen Fertilization; Linear Response

Full Text:

PDF


References


1. Galati VC, Galati VC, Alves AU. Crescimento e acúmulo de nutrientes da cultura do quiabeiro (Portuguese) [Okra growth and nutrient accumulation]. Semina: Ciências Agrárias 2013; 34: 191–199.

2. dos Santos Nascimento P, da Silva Paz VP, Júnior LSF, et al. Crescimento vegetativo do quiabeiro em função da salinidade da água de irrigação e da adubação nitrogenada (Portuguese) [Vegetative growth of okra as a function of irrigation water salinity and nitrogen fertilization]. Colloquium Agrariae 2017; 13(1): 10–15.

3. Malavolta E. O futuro da nutrição de plantas, tendo em vista aspectos agronômicos, econômicos e ambientais (Portuguese) [The future of plant nutrition, considering agronomic, economic and environmental aspects]. Information Agronomía Piracicaba 2008; 121: 1–10.

4. Bredemeier C, Mundstock CM. Regulation of nitrogen absortion and assimilation in plants. Ciência Rural 2000; 30: 365–372.

5. Cardoso MO. Desempenho de cultivares de quiabo em condições de “terra firme” do estado do Amazonas (Portuguese) [Performance of okra cultivars under dryland conditions in Amazonas State]. Horticultura Brasileira, Brasília 2001; 19(2).

6. Taiz L, Zeiger E. Fisiología vegetal (Spanish) [Plant physiology]. 5th ed. Artmed, Porto Alegre; 2013.

7. Marcussi FFN, de Godoy LJG, Bôas RLV. Nitrogen and potassium fertigation in sweet pepper culture based on N and K accumulation by plants. Irriga 2004; 9(1): 41–51.

8. Argenta G, Silva PRF, Bortolini CG. Leaf chlorophyll as an index of nitrogen status in cereals. Ciénc. Rural 2001; 31: 715–722.

9. Chapman SC, Barreto HJ. Using a chlorophyll meter to estimate specific leaf nitrogen of tropical maize during vegetative growth. Agronomy Journal 1997; 89(4): 557–562.

10. Filgueira FAR. Novo manual de olericultura: Agrotecnologia moderna na produção e comercialização de hortaliças (Portuguese) [New horticulture manual: Modern agrotechnology in the production and marketing of vegetables]. Viçosa: Universidade Federal de Viçosa; 2000.

11. Alvarado Carrillo M, Diaz Franco A, Garza Cano I. Okra (Abelmoschus esculentus L.) mycorrhization under drip irrigation. Revista Fitotecnia Mexicana 2007; 30(4): 437–441.

12. Dilruba S, Hasanuzzaman M, Karim R, et al. Yield response of okra to different sowing time and application of growth hormones. Journal Horticulture Science. Ornamental Plants 2009; 1: 10–14.

13. Ossom EM, Kunene VN. Effects of planting date on seedling emergence and vigor of okra (Abelmoschus esculentus L.) in Swaziland. World Journal of Agricultural Sciences 2011; 7(3): 320–326.

14. Adejoye OD, Awokoya JO, Emmanuel OE. Effect of seasonal changes on growth and yield of okra (Abelmoschs esculentus L.). Research Journal of Agriculture and Biological Sciences 2009; 5(6): 940–943.

15. Sonnenberg PE, Silva NF. Growth and yield of okra as influenced by planting dates. Pesquisa Agropecuária Tropical 2002; 32(1): 33–37.

16. Cerri AM, Vilella F. Yield generation in okra: Relationships between two cultivars in two planting dates. Revista de la Facultad de Agronomía 1996; 15(2–3): 207–212.

17. Supatra S, Mukherji S, Sen S. Influence of seasons in determining the date of sowing and fruit quality of Abelmoschus esculentus (L.) Moench (okra) and Lycopersicon esculentum Mill. (tomato). Indian Agriculturist 1998; 42: 161–166.

18. Kõppen WP. Climatología: Con un estudio de los climas de la tierra (Spanish) [Climatology: With a study of the climates of the earth]. Mexico D.F., MEX: Fondo de Cultura Económica; 1948.

19. INMET (Instituto Nacional de Meteorología). Mapas do Boletim Agro-climatológico (Portuguese) [Maps of the agro-climatological bulletin]. INMET, BRA; 2015.

20. Embrapa (Empresa Brasileira de Pesquisa Agropecuária). Sistema brasileiro de classificação de solos (Portuguese) [Brazilian system of soil classification]. 3rd ed. Brasília, BRA: Embrapa; 2013.

21. Gonçalves GC. Cultura do quiabo (Portuguese) [Okra culture]. Jornal Agrícola 2008.

22. Tukey JW. Comparing individual means in the analysis of variance. Biometrics 1949; 5: 99–114.

23. Ferreira DF. SISVAR-Sistema de análise de variância (Portuguese) [SISVAR-Analysis of variance system]. Version 5.3. Minas Gerais, BRA: Universidade Federal de Lavras; 2008.

24. Embrapa (Empresa Brasileira de Pesquisa Agropecuária). Sistema de produção para a cultura do quiabo (Portuguese) [Production system for okra cultivation]. Embrapa: Série Sistema de Produção No. 004; 1982.

25. Longo RM, Melo WJ. Urea hydrolysis in oxisols: Effects of substrate concentration, temperature, pH, incubation time and storage conditions. Revista Brasileira de Ciencia do Solo 2005; 29: 651–657.

26. Duarte FM. Perdas de nitrogênio por volatilização de amônia e efificiência de adubação nitrogenada na cultura do arroz irrigado (Portuguese) [Nitrogen losses by ammonia volatilization and efficiency of nitrogen fertilization in the crop irrigated rice]. Rio Grande do Sul: Universidade Federal de Santa Maria; 2006.

27. Donadelli AP, Turco HN, Kano C, et al. Rentabilidade e custo de produção do quiabeiro consorciado com adubos verdes (Portuguese) [Profitability and cost of production of okra intercropped with green manures]. Horticultura Brasileira 2010; 28: 411–415.

28. de Oliveira AP, Alves AU, Dornelas CSM, et al. Rendimento de quiabo em função de doses de nitrogênio (Portuguese) [Yield of okra as a function of nitrogen rates]. Acta Scientiarum Agronomy 2003; 25(2): 265–268.

29. de Oliveira AP, Oliveira AN, da Silva OPR, et al. Rendimento do quiabo adubado com esterco bovino e biofertilizante (Portuguese) [Yield of okra fertilized with bovine manure and biofertilizer]. Semina: Ciências Agrárias 2013; 34(6): 2629–2636.

30. Zucchi MR, Perinnazzo FK, Peixoto N, et al. Associação das culturas de quiabo e feijão-caupi (Portuguese) [Association of okra and cowpea crops]. Revista Agrotecnology 2012; 3(2): 12–23.

31. Costa MCB, Oliveira GD, Haag HP. Nutrição mineral de hortaliças. Efeito da omissão dos macronutrientes e do boro no desenvolvimento e na composição química do quiabeiro. (Portuguese) [Mineral nutrition of vegetables. Effect of omission of macronutrients and boron on the development and chemical composition of okra]. In: Haag HP, Minami K (editors). Nutrição mineral em hortaliças. Campinas: Fundação Cargill; 1981. p. 257–275.

32. Duarte TS, Peil R. Effect of source: Sink ratios and vegetative melon growth. Horticultura Brasileira 2010; 28: 271–276.

33. Cardoso MO, Berni RF. Crescimento e produção em quiabeiro com doses de nitrogénio (Portuguese) [Growth and yield in okra with nitrogen doses]. Horticultura Brasileira 2011; 29: 1777–1783.

34. Heckman JR. In-season soil nitrate testing as a guide to nitrogen management for annual crops. Hort Technology 2002; 12(4): 706–710.

35. Costa RA. Cultura do quiabo submetida a lâminas de irrigação por gotejamento em função da evaporação em tanque classe A (Portuguese) [Okra culture submitted to drip irrigation depths due to evaporation in class A tank] [PhD thesis]. São Paulo: Universidad Estatal Paulista; 2014.

36. Sediyama MAN, Santos MR, Vidigal SM, et al. Effects of plant population and swine biofertilizer application on yield and nutrient content of okra. Bragantia 2009; 68: 913–920.

37. Embrapa (Empresa Brasileira de Pesquisa Agropecuária). Rendimento do quiabeiro com doses de nitrogênio em cultivo não adensado (Portuguese) [Yield of okra with nitrogen doses in non-densified cultivation]. Boletim de Pesquisa e Desenvolvimento 15; 2012.

38. Larcher W. Ecofisiologia vegetal (Portuguese) [Plant Ecophysiology]. São Carlos: RiMa Editora; 2000.

39. Smeal D, Zhang H. Chlorophyll meter evaluation for nitrogen management in corn. Communications in Soil Science and Plant Analysis, New York 1994; 25(9/10): 1495–1503.




DOI: https://doi.org/10.24294/th.v5i1.1813

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This site is licensed under a Creative Commons Attribution 4.0 International License.