A review on the effect on phytochemical compounds relevant to human health by broccoli processing technologies

Cecilia Vázquez-González, Beatriz Mejía-Garibay, Ma. Reyna Robles-López, Carolina Ramírez-López

Article ID: 1807
Vol 4, Issue 1, 2021

VIEWS - 721 (Abstract) 515 (PDF)

Abstract


Broccoli has been consumed around the world in various ways; either raw, blanched, frozen, dehydrated or fermented; however, functional foods and nutraceuticals are currently being designed and marketed from broccoli, through the extraction of compounds such as sulforaphane, which according to several studies and depending on its bioavailability has a protective effect on some types of cancer. Likewise, several food technologies are reported to seek to offer innovative foods to increasingly careful and critical consumers, ensuring that they retain their nutritional and sensory attributes even after processing and that they are also safe. In this sense, studies on the effect of processing on compounds of interest to health are of great relevance. Therefore, this article presents an overview on the study of traditionally consumed broccoli and the design of new products from the use of agro-industrial residues that, due to their high content of fiber and fitochemical compounds, can benefit the quality of life of the human population.


Keywords


Broccoli; Functional Food; Food Technologies; Sulforaphane

Full Text:

PDF


References


1. Hasler CM. Functional foods: Benefits, concerns and challenges—A position paper from the American Council on Science and Health. The Journal of Nutrition 2002; 132(12): 3772–3781.

2. doi: 10.1093/jn/132.12.3772.

3. Keservani R, Kesharwani R, Vyas N, et al. Nutraceutical and functional food as future food: A review. Der Pharmacia Lettre 2010; 2(1): 106–116.

4. Alvarez-Jubete L, Valverde J, Kehoe K, et al. Development of a novel functional soup rich in bioactive sulforaphane using broccoli (Brassica oleracea L. ssp. italica) florets and by-products. Food Bioprocess Technology 2014; 7(5): 1310–1321. doi: 10.1007/s11947-013-1113-9.

5. Yeung A, Mocan A, Atanasov A. Let food be thy medicine and medicine be thy food: A bibliometric analysis of the most cited papers focusing on nutraceuticals and functional foods. Food Chemistry 2018; 269(15): 455–465. doi: 10.1016/j.foodchem.2018.06.139.

6. Tripathi YB, Tripathi P, Arjmandi B. 2005. Nutraceuticals and cancer management. Frontiers in Bioscience 2005; 10: 1607–1618.

7. doi: 10.2741/1644.

8. Kalra EK. Nutraceutical-definition and introduction. AAPS Pharmaceutical Science 2003; 5(3): 27–28. doi: 10.1208/ps050325.

9. De Ancos B, Fernández-Jalao I, Sánchez-Moreno C. Functional compounds in IV and V range products. Revista Iberoamericana de Tecnología Postcosecha 2016; 16(1): 8–17.

10. Proestos C. Superfoods: Recent data on their role in the prevention of diseases. Current Research in Nutrition and Food Science Journal 2018; 6(3): 576–593. doi: 10.12944/CRNFSJ.6.3.02.

11. Filannino P, Bai Y, Di Cagno R, et al. Metabolism of phenolic compounds by Lactobacillus spp. during fermentation of cherry juice and broccoli puree. Food Microbiology 2015; 46: 272–279.

12. doi: 10.1016/j.fm.2014.08.018.

13. Cai C, Miao H, Qian H, et al. Effects of industrial pre-freezing processing and freezing handling on glucosinolates and antioxidant attributes in broccoli florets. Food Chemistry 2016; 210: 451–456. doi: 10.1016/j.Godchem.2016.04.140.

14. Bhandari SR, Kwak JH, Jo JS, et al. Changes in phytochemical content and antioxidant activity during inflorescence development in broccoli. Chilean Journal of Agricultural Research 2019; 79(1): 36–47. doi: 10.4067/S0718-58392019000100036.

15. Berndtsson E. Dietary fibre and phenolic compounds in broccoli (Brassica oleracea Italica group) and kale (Brassica oleracea Sabellica group). A literature study about the potential uses of side streams. Alnarp: Sveriges lantbruksuniversitet; 2019.

16. Cronquist AL. An integrated system of classification of flowering plants. New York: Columbia University Press; 1981.

17. SIAP (Servicio de Información Agroalimentaria y Pesquera). El brócoli, casi un “Súper alimento” (Spanish) [Broccoli, almost a “Superfood”] [Internet]. 2020. Available from: https://www.gob.mx/siap/articulos/el-brocoli-casi-un-super-alimento.

18. Raiola A, Errico A, Petruk G, et al. 2017. Bioactive compounds in brassicaceae vegetables with a role in the prevention of chronic diseases. Molecules 2017; 23(1): 1–10. doi: 10.3390/molecules23010015.

19. Domínguez-Perles R, Martínez-Ballesta MC, Carvajal M, et al. Broccoli- derived by-products-a promising source of bioactive ingredients. Journal of Food Science 2010; 75(4): C383–C392.

20. doi: 10.1111/j.1750-3841.2010.01606.x

21. Giletto C, Losada C, Cacace J. Brócoli envasado en polietileno de baja densidad y policloruro de vinilo (Spanish) [Broccoli packaged in low density polyethylene and polyvinyl chloride]. Revista Facultad de Agronomía 2001; 21(3): 191–198.

22. Lemoine M, Civello P, Chaves A, et al. Effect of combined treatment with hot air and UV-C on senescence and quality parameters of minimally processed broccoli (Brassica oleracea L. var. Italica). Postharvest Biology and Technology 2008; 48(1): 15–21. doi: 10.1016/j.postharvbio.2007.09.016.

23. Hernández P, Ayuso-Yuste M, González-Gómez D, et al. Behaviour of fresh cut broccoli under different modified atmosphere conditions. Emirates Journal of Food and Agriculture 2017; 29(3): 188–197. doi: 10.9755/ej&2016-07-907.

24. Dos Reis LC, de Oliveira VR, Hagen ME, et al. Effect of cooking on the concentration of bioactive compounds in broccoli (Brassica oleracea var. Avenger) and cauliflower (Brassica oleracea var. Alphina F1) grown in an organic system. Food Chemistry 2015; 172: 770–777. doi: 10.1016∕j.foodchem.2014.09.124.

25. Stringer S, Plowman J, Peck MW. The microbiological quality of hot water-washed broccoli florets and cut green beans. Journal of Applied Microbiology 2007; 102(1): 41–50. doi: 10.1111/j.1365-2672.2006.03065.x.

26. Sánchez-Vega R, Garde-Cerdán T, Rodríguez-Roque MJ, et al. 2020. High-intensity pulsed electric fields or thermal treatment of broccoli juice: The effects of processing on minerals and free amino acids. European Food Research Technology 2020; 246: 539–548. doi: 10.1007/s00217-019-03420-y.

27. Kmiecik W, Slupski J, Lisiewska Z. Comparison of amino acid content and protein quality in raw broccoli and in broccoli after technological and culinary processing. Journal of Food Processing and Preservation 2010; 34(s2): 639–652. doi: 10.1111∕j.1745-4549.2009.00422.x.

28. Krupa-Kozak U, Drabinska N, Rosell CM, et al. Broccoli leaf powder as an attractive by-product ingredient: Effect on batter behaviour, technological properties and sensory quality of gluten-free mini sponge cake. International Journal of Food Science and Technology 2019; 54: 1121–1129. doi: 10.1111/ijfs.13972

29. Chen Y-S, Liou M-S, Ji S-H, et al. Isolation and characterization of lactic acid bacteria from Yan-tsai-shin (fermented broccoli stems), a traditional fermented food in Taiwan. Journal of Applied Microbiology 2013; 115(1): 125–132. doi: 10.1111/jam.12199.

30. Cuomo V, Fernando BL, Meca G, et al. Bioaccessibility of glucoraphanin from broccoli using an in vitro gastrointestinal digestion model. CyTA–Journal of Food 2015; 13(3): 361–365.

31. doi: 10.1080/19476337.2014.984337.

32. An S, Han JI, Kim MJ, et al. Ethanolic extracts of Brassica campestris spp. rapa roots prevent high-fat diet-induced obesity via beta(3)-adrenergic regulation of white adipocyte lipolytic activity. Journal of Medicinal Food 2010; 13(2): 406–414. doi: 10.1089/jmf.2009.1295.

33. Jeon SM, Kim JE, Shin SK, et al. Randomized double-blind placebo-controlled trial of powdered Brassica rapa ethanol extract on alteration of body composition and plasma lipid and adipocytokine profiles in overweight subjects. Journal Medicinal Food 2013; 16(2): 133–138. doi: 10.1089/jmf.2012.2249.

34. Shah MA, Sarker MMR, Gousuddin M. Antidiabetic potential of Brassica oleracea var. Italica in Type 2 diabetic Sprague dawley (sd) rats. International Journal Pharmacognosy and Phytochemical Research 2016; 8(3): 462–469.

35. Bueno-Solano C, Martinez D, Camacho-Gil F, et al. Contenido de sulforafano (1-isotiocianato-4-(metilsulfinil)-butano) en vegetales crucíferos (Spanish) [Sulforaphane (1-isothiocyanate-4-(methylsulfinyl)-butane) content in cruciferous vegetables]. Archivos Latinoamericanos de Nutrición 2009; 59(1).

36. Aires A, Carvalho R, Rosa E. Glucosinolate composition of brassica is affected by postharvest, food processing and myrosinase activity. Journal of Food Processing and Preservation 2012; 36(3): 214–224. doi: 10.1111∕j.1745-4549.2011.00581.x.

37. Chuanphongpanich S, Phanichphant S, Bhuddasukh D, et al. Bioactive glucosinolates and antioxidant properties of broccoli seeds cultivated in Thailand. Songklanakarin Journal of Science and Technology 2006; 28(1): 55–61.

38. Fahey JW, Holtzclaw WD, Wehage SL, et al. Sulforaphane bioavailability from glucoraphanin-rich broccoli: Control by active endogenous myrosinase. PLoS One 2015; 10(11): e0140963. doi: 10.1371/journal.pone.0140963.

39. Alpuche-Solís A, Paredes-Lopez O. Assessment of glucosinolates in broccoli by three different methodologies. Journal of Food Biochemistry 1992; 16(5): 265–275. doi: 10.1111/j.1745-4514.1992.tb00451.x.

40. Abdull R, Ahmad F, Noor N. Cruciferous vegetables: Dietary phytochemicals for cancer prevention. Asian Pacific Journal of Cancer Prevention: APJCP 2013; 14(3): 1565–1570. doi: 10.7314/APJCP.2013.14.3.1565.

41. Bhandari SR, Jo JS, Lee JG. Comparison of glucosinolate profiles in different tissues of nine Brassica crops. Molecules 2015; 20(9): 15827–15841. doi: 10.3390/molecules200915827.

42. Alanís-Garza P, Becerra-Moreno A, Mora-Nieves J, et al. Effect of industrial freezing on the stability of chemopreventive compounds in broccoli. International Journal of Food Sciences and Nutrition 2015; 66(3): 1–7. doi: 10.3109∕09637486.2015.1007451.

43. Mahn A, Pérez C. Optimization of an incubation step to maximize sulforaphane content in pre-processed broccoli. Journal of Food Science Technology 2016; 53(11): 4110–4115. doi: 10.1007/s13197-016-2386-6.

44. Mahn A, Pérez C, Reyes A. Effect of the drying conditions in a pulsed fluidized bed dryer on the sulforaphane content of broccoli. Información Tecnológica 2017; 28(4): 17–28. doi: 10.4067/S0718-07642017000400004.

45. Mahn A, Rubio M. Evolution of total polyphenols content and antioxidant activity in broccoli florets during Storage at Different Temperatures. Journal of Food Quality 2017; 1–9. doi: 10.1155/2017/3742183.

46. Abdullahi N. Critical review on principles and applications of hurdle technology in food preservation. Annals. Food Science and Technology 2016; 17: 485–491.

47. Alzamora S, Guerrero N, Nieto A, et al. Conservación de frutas y hortalizas mediante tecnologías combinadas. Manual de capacitación (Spanish) [Conservation of fruits and vegetables by combined technologies. Training manual]. Servicio de Tecnologías de Ingeniería Agrícola y Alimentaria (AGST). Dirección de Sistemas de Apoyo a la Agricultura (AGS); FAO; 2004.

48. Leistner L. Hurdle technology. In: Barbosa-Cánovas GV (editor). Food Engineering-Vol III. Encyclopedia of Life Support Systems. Oxford: EOLSS Publishers; 2009.

49. Rostami Z, Ahmad M, Khan M, et al. Food preservation by hurdle technology: A review of different hurdle and interaction with focus on foodstuffs. Journal of Pure and Applied Microbiology 2016; 10(4): 2633–2639. doi: 10.22207/JPAM.10.4.20.

50. Moreira M, Roura S, Ponce A. Effectiveness of chitosan edible coatings to improve microbiological and sensory quality of fresh cut broccoli. LWT–Food Science and Technology 2011; 44(10): 2335–2341. doi: 10.1016/j.lwt.2011.04.009.

51. Das B, Kim J. Microbial quality and safety of fresh-cut broccoli with different sanitizers and contact times. Journal of Microbiology and Biotechnology 2010; 20(2): 363–369. doi: 10.4014∕jmb.0907.07009.

52. Ansorena M, Marcovich N, Roura S. Impact of edible coatings and mild heat shocks on quality of minimally processed broccoli (Brassica oleracea L.) during refrigerated storage. Postharvest Biology and Technology–Postharvest Biology Technology 2010; 59(1): 53–63.

53. doi: 10.1016/j.postharvbio.2010.08.011.

54. Costa M, Vicente A, Civello P, et al. UV-C treatment delays postharvest senescence in broccoli florets. Postharvest Biology and Technology 2006; 39(2): 204–210. doi: 10.1016/j.postharvbio.2005.10.012.

55. Martínez-Hernández B, Artés-Hernández F, Gómez P, et al. Induced changes in bioactive compounds of kailan-hybrid broccoli after innovative processing and storage. Journal of Functional Foods 2013; 5(1): 133–143. doi: 10.1016/j.jfE2012.09.004.

56. Guo L,Yang R, Wang Z, et al. 2014. Glucoraphanin, sulforaphane and myrosinase activity in germinating broccoli sprouts as affected by growth temperature and plant organs. Journal of Functional Foods 2014; 9: 70–77. doi: 10.1016/j.jff.2014.04.015.

57. Lima GPP, Machado TM, Oliveira LM, et al. Ozonated water and chlorine effects on the antioxidant properties of organic and conventional broccoli during postharvest. Scientia Agricola 2014; 71(2): 151–156. doi: 10.1590/S0103-90162014000200010.

58. Xu F, Chen X, Jin P, et al. Effect of ethanol treatment on quality and antioxidant activity in postharvest broccoli florets. European Food Research Technology 2012; 235: 793–800. doi: 10.1007/s00217-012-1808-6.

59. Galgano F, Favati F, Caruso M, et al. The influence of processing and preservation on the retention of health-promoting compounds in broccoli. Journal of Food Science 2007; 72(2): S130–S135. doi: 10.1111/j.1750-3841.2006.00258.x.

60. Bourdichon R, Casaregola S, Farrokh C, et al. Food fermentations: Microorganisms with technological beneficial use. International Journal of Food Microbiology 2012; 154(3): 87–97.

61. doi: 10.1016/j.ijfoodmicro.2011.12.030.

62. Manas RS, Marimuthu A, Ray RC, et al. Fermented fruits and vegetables of Asia: A potential source of probiotics. Biotechnology Research International 2014; 1–19. doi: 10.1155/2014/250424.

63. Campas-Baypoli ON, López-Cervantes J, Sánchez-Machado DI. Alternativas para el aprovechamiento de los residuos agrícolas de brócoli (Spanish) [Alternatives for the utilization of broccoli agricultural residues]. Revista La Sociedad Académica 2012; 39: 15–23.

64. Fuller Z, Louis P, Mihajlovski A, et al. Influence of cabbage processing methods and prebiotic manipulation of colonic microflora on glucosinolate breakdown in man. British Journal of Nutrition 2007; 98(2): 364–372. doi: 10.1017/S0007114507709091.

65. Campas-Baypoli ON, Sánchez-Machado DI, Bueno-Solano C, et al. Biochemical composition and physicochemical properties of broccoli flours. International Journal of Food Sciences and Nutrition 2009; 60(4): 163–173. doi: 10.1080/09637480802702015.




DOI: https://doi.org/10.24294/th.v4i1.1807

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This site is licensed under a Creative Commons Attribution 4.0 International License.