Non-pollinating floral visitors of the Cucurbita genus plants and their relationship with the presence of pollinating bees

Mariana Paola Mazzei, José Luis Vesprini, Leonardo Galetto

Article ID: 1804
Vol 4, Issue 1, 2021

VIEWS - 622 (Abstract) 449 (PDF)

Abstract


Flower-visiting insects may be pollinators or, conversely, unrelated to the reproductive process of plants. Interactions between pollinating and non-pollinating flower visitors can negatively influence pollen transfer. Little is known about the effects of bee visits on pollination of squash (Cucurbita spp.) flowers and their interactions with the presence of other floral visitors. The study was conducted at the Facultad de Ciencias Agrarias (Universidad Nacional de Rosario) in the south of Santa Fe (Argentina) and evaluated the effect of the presence of non-pollinating floral visitors on bee foraging in the flowers of two cultivated squash species. Flower sex and squash species C. maxima and C. moschata were included as variables. A total of 937 visitors were recorded in 403 flowers. Bees of the tribes Eucerini and Apini were the most abundant pollinators with an average of 2.3 individuals per flower during 10 minutes of observation. Diptera, flower sex and squash species did not influence the number of bee visits, whereas the prolonged stay of coleoptera and formicids negatively affected the presence of bees on both squash species. The presence of coleoptera reduced bee visits by 38%, while in the presence of ants, bees did not visit the flowers. The theft of nectar and pollen by non-pollinating floral visitors could have a negative effect on the reproductive success of squash.


Keywords


Coleoptera; Diptera; Formicidae; Interaction; Squash

Full Text:

PDF


References


1. Wielgoss A, Tscharntke T, Rumede A, et al. Interaction complexity matters: Disentangling services and disservices of ant communities driving yield in tropical agroecosystems. Proceedings of the Royal Society B: Biological Sciences 2014; 281(1775): 20132144.

2. Wäckers FL, Romeis J, van Rijn P. Nectar and pollen feeding by insect herbivores and implications for multitrophic interactions. Annual Review of Entomology 2007; 52: 301–323.

3. Herrera CM, de Vega C, Canto A, et al. Yeasts in floral nectar: A quantitative survey. Annals of Botany 2009; 103(9): 1415–1423.

4. Walsh GC. Host range and reproductive traits of Diabrotica speciosa (Germar) and Diabrotica viridula (F.) (Coleoptera: Chrysomelidae), two species of South American pest rootworms, with notes on Other Species of Diabroticina. Environmental Entomology 2003; 32(2): 276–285.

5. Herrera CM, Medrano M, Rey PJ, et al. Interaction of pollinators and herbivores on plant fitness suggests a pathway for correlated evolution of mutualism-and antagonism-related traits. Proceedings of the National Academy of Sciences 2002; 99(26): 16823–16828.

6. Leavitt H, Robertson IC. Petal herbivory by chrysomelid beetles (Phyllotreta sp.) is detrimental to pollination and seed production in Lepidium papilliferum (Brassicaceae). Ecological Entomology 2006; 31(6): 657–660.

7. McCall AC, Irwin RE. Florivory: The intersection of pollination and herbivory. Ecology Letters 2006; 9(12): 1351–1365.

8. Schemske DW, Horvitz CC. Plant‐animal interactions and fruit production in a neotropical herb: A path analysis. Ecology 1988; 69(4): 1128–1137.

9. Strauss SY. Floral characters link herbivores, pollinators, and plant fitness. Ecology 1997; 78(6): 1640–1645.

10. Sutter L, Albrecht M. Synergistic interactions of ecosystem services: Florivorous pest control boosts crop yield increase through insect pollination. Proceedings of the Royal Society B: Biological Sciences 2016; 283(1824): 20152529.

11. Maloof JE, Inouye DW. Are nectar robbers cheaters or mutualists? Ecology 2000; 81(10): 2651–2661.

12. Trejo-Salazar RE, Scheinvar E, Eguiarte LE. Who really pollinates agaves? Diversity of floral visitors in three species of Agave (Agavoideae: Asparagaceae). Revista Mexicana de Biodiversidad 2015; 86(2): 358–369.

13. Ness JH. A mutualism’s indirect costs: The most aggressive plant bodyguards also deter pollinators. Oikos 2006; 113(3): 506–514.

14. Cembrowski AR, Tan MG, Thomson JD, et al. Ants and ant scent reduce bumblebee pollination of artificial flowers. The American Naturalist 2014; 183(1): 133–139.

15. Junker R, Chung AYC, Blüthgen N. Interaction between flowers, ants and pollinators: Additional evidence for floral repellence against ants. Ecological Research 2007; 22(4): 665–670.

16. Freitas L, Bernardello G, Galetto L, et al. Nectaries and reproductive biology of Croton sarcopetalus (Euphorbiaceae). Botanical Journal of the Linnean Society 2001; 136(3): 267–277.

17. Vesprini JL, Galetto L, Bernardello G. The beneficial effect of ants on the reproductive success of Dyckia floribunda (Bromeliaceae), an extrafloral nectary plant. Canadian Journal of Botany 2003; 81(1): 24–27.

18. López-Anido F, Vesprini JL. Extrafloral Nectaries in Cucurbita maxima Sub. andreana (Naudin) Filov. Cucurbit Genetic Cooperative Report 2007; 30: 38–42.

19. Delabie JHC, Ospina M, Zabala G. Relaciones entre hormigas y plantas: Una introducción (Spanish) [Relationships between ants and plants: An introduction]. In: Fernández F (editor). Introducción a las hormigas de la región Neotropical. Colombia: Instituto de Investigación de Recursos Biológicos Alexander von Humboldt; 2003. p. 440.

20. Martínez-Pérez L, Faife-Cabrera M. Robo de néctar en especies de los cuabales de Santa Clara, Cuba central (Spanish) [Nectar robbing in species of the cuabales of Santa Clara, central Cuba]. Revista del Jardín Botánico Nacional 2018; 39: 83–85.

21. Wãckers FL, van Rijn PCJ, Ruin J. Plant-provided food for carnivorous insects: A protective mutualism and its applications. Cambridge: Cambridge University Press; 2005. p. 356.

22. Lenzi M, Orth AI, Guerra TM. Pollination ecology of Momordica charantia L. (Cucurbitaceae) in Florianópolis, SC, Brazil. Brazilian Journal of Botany 2005; 28: 505–513.

23. Krug C, Alves-dos-Santos I, Cane J. Visiting bees of Cucurbita flowers (Cucurbitaceae) with emphasis on the presence of Peponapis fervens smith (Eucerini--Apidae)-Santa Catarina, Southern Brazil. Oecologia Australis 2010; 14(1): 128–139.

24. Bazo I, Espejo R, Palomino C, et al. Estudios de biología floral, reproductiva y visitantes florales en el “Loche” de Lambayeque (Cucurbita moschata DUCHESNE) (Spanish) [Studies of floral biology, reproductive and floral visitors in the Lambayeque “Loche” (Cucurbita moschata DUCHESNE)]. Ecología Aplicada 2018; 17(2): 191–205.

25. Dmitruk M. Flowering, nectar production and insects visits in two cultivars of Cucurbita maxima Duch. flowers. Acta Agrobotanica 2008; 61(1).

26. Passarelli LM. 2002. Importance of Apis mellfra L. in the production of Cucurbita maxima Duch. Investigación Agraria, Producción y Protección Vegetales 2002; 17(1); 5–13.

27. Hurd PD, Linsley EG, Whitaker TW. Squash and gourd bees (Peponapis, Xenoglossa) and the origin of the cultivated Cucurbita. Evolution 1971; 25(1): 218–234.

28. Ashworth L, Galetto L. Pollinators and reproductive success of the wild cucurbit Cucurbita maxima ssp. andreana (Cucurbitaceae). Plant Biology 2001; 3(4): 398–404.

29. Nicodemo D, Couto RHN, Malheiros EB, et al. Honey bee as an effective pollinating agent of pumpkin. Scientia Agricola 2009; 66: 476–480.

30. Vidal MG, Jong D, Wien HC, et al. Pollination and fruit set in pumpkin (Cucurbita pepo) by honey bees. Brazilian Journal of Botany 2010; 33: 106–113.

31. Canto-Aguilar MA, Parra-Tabla V. Importance of conserving alternative pollinators: Assessing the pollination efficiency of the squash bee, Peponapis limitaris in Cucurbita moschata (Cucurbitaceae). Journal of Insect Conservation 2000; 4(3): 201–208.

32. Delgado‐Carrillo O, Martén‐Rodríguez S, Ashworth L, et al. Temporal variation in pollination services to Cucurbita moschata is determined by bee gender and diversity. Ecosphere 2018; 9(11): e02506.

33. Parra-Tabla V, Campos-Navarrete MJ, Arceo-Gómez G. Plant–floral visitor network structure in a smallholder Cucurbitaceae agricultural system in the tropics: Implications for the extinction of main floral visitors. Arthropod-Plant Interactions 2017; 11(5): 731–740.

34. Wille A. Las abejas Peponapis y Xenoglossa en Costa Rica y su importancia en la polinización de las Cucurbita domésticas (Spanish) [Peponapis and Xenoglossa bees in Costa Rica and their importance in the pollination of domestic Cucurbita]. Revista de Biologia Tropical 1985; 33(1): 17–24.

35. Delgado-Carrillo O, Lopezaraiza-Mikel M, Ashworth L, et al. A scientific note on the first record of nesting sites of Peponapis crassidentata (Hymenoptera: Apidae). Apidologie 2017; 48(5): 644–647.

36. Leguizamón A. Modifying Argentina: GM soy and socio-environmental change. Geoforum 2014; 53: 149–160.

37. Molina GAR, Poggio SL, Ghersa CM. Epigeal arthropod communities in intensively farmed landscapes: Effects of land use mosaics, neighbourhood heterogeneity, and field position. Agriculture, Ecosystems & Environment 2014; 192: 135–143.

38. Bolton B, Palacio E, Fernández F, et al. Claves y sinopsis de las subfamilias y géneros (Spanish) [Keys and synopsis of subfamilies and genera]. In: Fernández F (editor). Introducción a las hormigas de la región Neotropical. Colombia: Instituto de Investigación de Recursos Biológicos Alexander von Humboldt; 2003. p. 398.

39. Claps L, Roig S, Debandi G. Biodiversidad de artrópodos argentinos (Spanish) [Biodiversity of Argentine arthropods]. Mendoza: Sociedad Entomológica Argentina ediciones; 2008. p. 620.

40. Dalmazzo M, González-Vaquero RA, Roig-Alsima A, et al. Hymenoptera: Halictidae. In: Roig-Juñent S, Claps LE, Morrone JJ (editor). Artrópodos Argentinos volume IIII. San Miguel de Tucumán: Editorial INSUE-UNT; 2014. p. 203–219.

41. Delignette-Muller ML, Dutang C. Fitdistrplus: An R package for fitting distributions. Journal of Statistical Software 2015; 64: 1–34.

42. Bates D, Mächler M, Bolker B, et al. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 2015; 67(1): 1–48.

43. R Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2018.

44. Breheny P, Burchett W. Visualization of regression models using visreg. The R Journal 2017; 9(2): 56–71.

45. Hartig F. DHARMa: Residual diagnostics for hierarchical (multi-level/mixed) regression models [Internet]. R package version 0.3.1; 2019. Available from: https://r.meteo.uni.wroc.pl/web/packages/DHARMa/vignettes/DHARMa.html.

46. Sing T, Sander O, Beerenwinkel N, et al. ROCR: Visualizing classifier performance in R. Bioinformatics 2005; 21(20): 3940–3941.

47. Andrews ES, Theis N, Adler LS. Pollinator and herbivore attraction to Cucurbita floral volatiles. Journal of Chemical Ecology 2007; 33(9): 1682–1691.

48. Giannini TC, Saraiva AM, Alves-dos-Santos I. Ecological niche modeling and geographical distribution of pollinator and plants: A case study of Peponapis fervens (Smith, 1879) (Eucerini: Apidae) and Cucurbita species (Cucurbitaceae). Ecological Informatics 2010; 5(1): 59–66.

49. Batista EL, Pérez RO. Influencia de la abeja melífera en el rendimiento del cultivo de la calabaza (Cucurbita pepo L.) (Spanish) [Influence of honey bee on the yield of squash (Cucurbita pepo L.)]. Centro Agrícola 2015; 42(2): 47–53.

50. Herrera Villalobos MJ. Determinación del rendimiento del cultivo de Zucchini (Cucurbita pepo L.) por acción de las abejas (Apis mellifera L.) como agentes polinizadores en el cantón Riobamba, provincia de Chimborazo (Spanish) [Determination of Zucchini (Cucurbita pepo L.) crop yield by the action of bees (Apis mellifera L.) as pollinating agents in Riobamba canton, Chimborazo province] [Undergraduate thesis]. Riobamba: Escuela Superior Politécnica de Chimborazo; 2019. p. 81.

51. Agbagwa IO, Ndukwu BC, Mensah SI. Floral biology, breeding system, and pollination ecology of Cucurbita moschata (Duch. ex Lam) Duch. ex Poir. varieties (Cucurbitaceae) from parts of the Niger Delta, Nigeria. Turkish Journal of Botany 2007; 31(5): 451–458.

52. Nepi M, Pacini E, Willemse MTM. Nectary biology of Cucurbita pepo: Ecophysiological aspects. Acta Botanica Neerlandica 1996; 45(1): 41–54.

53. Mathewson JA. Nest construction and life history of the eastern cucurbit bee, Peponapis pruinosa (Hymenoptera: Apoidea). Journal of the Kansas Entomological Society 1968; 255–261.

54. Michener CD. Biogeography of the bees. Annals of the Missouri Botanical Garden 1979; 66(3): 277–347.

55. Hurd P, Linsley E. The squash and gourd bees—genera Peponapis Robertson and Xenoglossa Smith—inhabiting America north of Mexico (Hymenoptera: Apoidea). Hilgardia 1964; 35(15): 375–477.

56. Michener CD, LaBerge WE, Moure JS. Some American Eucerini bees. Dusenia 1955; 6(6): 213–228.

57. Universidad Federal de Paraná. Moure’s bee catalogue [Internet]. In: Peponapis Robertson 1902. Brazil; 1902. Available from: http://moure.cria.org.br/catalogue?id=30357

58. Martins J, Carneiro A, Souza L, et al. How pollinator visits are affected by flower damage and ants presence in Ipomoea carnea subs. fistulosa (Martius and Choise) (Convolvulaceae)? Brazilian Journal of Biology 2019; 80: 47–56.

59. Tsuji K, Hasyim A, Nakamura K. Asian weaver ants, Oecophylla smaragdina, and their repelling of pollinators. Ecological Research 2004; 19(6): 669–673.

60. Almeida AM, Figueiredo RA. Ants visit nectaries of Epidendrum denticulatum (Orchidaceae) in a Brazilian rainforest: Effects on herbivory and pollination. Brazilian Journal of Biology 2003; 63: 551–558.

61. Martins Belo R, Fekete Moutinho M, Sicsu P, et al. Formigas diminuem a quantidade de visitantes florais em Cordia curassavica (Boraginaceae) (Spanish) [The number of visitors in Cordia curassavica (Boraginaceae) is very small]. Curso de Pós-Graduação em Ecologia - Universidade de São Paulo; 2011.

62. Gonzálvez FG, Santamaría L, Corlett RT, et al. Flowers attract weaver ants that deter less effective pollinators. Journal of Ecology 2013; 101(1): 78–85.

63. Acuña Perandrés A. Pheidole pallidula como posible vector de polinización asistida en cultivos de calabacín (Cucurbita pepo L.) (Spanish) [Pheidole pallidula as a possible vector for assisted pollination in zucchini (Cucúrbita pepo L.) crops] [Undergraduate thesis]. Girona: Universitat de Girona; 2016. p. 32.

64. Cuba OH. Polinización y hormigas (Spanish) [Pollination and ants] [Internet]. 2005. Available from: http://lamarabunta.org/videos/Polinyhorm.pdf.

65. Goitia W, Bosque C, Jaffe K. Interacción hormiga-polinizador en cacao (Spanish) [Ant-pollinator interaction in cacao]. Turrialba 1992; 42(2): 178–186.

66. Lundin O, Smith HG, Rundlöf M, et al. When ecosystem services interact: Crop pollination benefits depend on the level of pest control. Proceedings of the Royal Society B: Biological Sciences 2013; 280(1753): 20122243.

67. Krupnick GA, Weis AE, Campbell DR. The consequences of floral herbivory for pollinator service to Isomeris arborea. Ecology 1999; 80(1): 125–134.

68. Mothershead K, Marquis RJ. Fitness impacts of herbivory through indirect effects on plant–pollinator interactions in Oenothera macrocarpa. Ecology 2000; 81(1): 30–40.

69. Irwin RE, Brody AK, Waser NM. The impact of floral larceny on individuals, populations, and communities. Oecologia 2001; 129(2): 161–168.




DOI: https://doi.org/10.24294/th.v4i1.1804

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This site is licensed under a Creative Commons Attribution 4.0 International License.