In vitro establishment: Monstera acuminata Koch and Monstera deliciosa Liebm

Nancy Mariel Casanova Palomeque, Vincenzo Bertolini, Leobardo Iracheta Donjuan

Article ID: 1795
Vol 4, Issue 1, 2021

VIEWS - 1571 (Abstract) 1261 (PDF)

Abstract


The study evaluated the aseptic establishment of Monstera acuminata Koch and Monstera deliciosa Liebm (Araceae) from leaves and the induction of in vitro organogenesis of M. acuminata K. from stem discs of young shoots. For this purpose, different disinfection protocols were applied to mature leaves and young shoots, from which leaf explants of approximately 1 cm2 and stem discs of approximately 1 mm thickness were extracted. The explants were established in semi-solid media with different hormone treatments during the aseptic establishment stage and induction of organogenesis. Disinfection with 3% sodium hypochlorite (NaClO) for 20 min and 50% Murashige and Skoog[1] medium with plant tissue culture preservative (PPM) favored less oxidation in leaf explants of both species. All explants of M. deliciosa in both treatments grown in PPM-added medium and at different disinfection protocols survived, showed no contamination and more than 80% retained cellular activity up to 49 days of culture age. At 35 days of culture, with disinfection in Tween-20 + 20% ethanol + 2.5% NaClO, and seeding of explants in MS medium added with 1 mg/L of BAP, 0.5 mg/L of AIA and 0.1 mg/L of ANA, seven new shoots of stem discs were induced. Monstera deliciosa was more adaptable to in vitro conditions. Advances in aseptic establishment and induction of organogenesis in native Araceae for wicker production are the basis for ex situ conservation of local populations.


Keywords


Araceae; Aseptic Establishment; Ex Situ Conservation; Leaf Explants; Organogenesis

Full Text:

PDF


References


1. Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiologia Plantarum 1962; 5: 473–497.

2. Villaseñor JL. Checklist of the native vascular plants of Mexico. Mexico: Revista mexicana de biodiversidad; 2016. doi: 10.1016/j.rmb.2016.06.017.

3. Reed BM, Gupta S, Uchendu E. In vitro Genebanks for preserving tropical biodiversity. In: Conservation of tropical plant species. New York: Springer New York; 2013. p. 77–106.

4. Montes S, Morales C, Bell E. Regeneración de plantas de Anthurium andreanum Lind mendiante el empleo del cultivo in vitro (Spanish) [Regeneration of Anthurium andreanum Lind plants through the use of in vitro culture]. Cultivos Tropicales 2004; 25(3): 5–7.

5. Materán-Oviedo ME, Vega-Castro MC, Sánchez-Olate ME, et al. Reactivación del material vegetal élite de Pinus radiata D. Don. Mediante microinjerto in vitro (Spanish) [Reactivation of the elite plant material of Pinus radiata D. Don. By in vitro micrografting]. Interciencia 2008; 33(1): 66–70.

6. Atak C, Celik O. Micropropagation of Anthurium andraeanum from leaf explants. Pakistan Journal of Botany 2009; 41(3): 1155–1161.

7. Valle-Sandoval MR, Mascorro-Gallardo JO, Gil-Vázquez IG. Regeneración directa in vitro de Crisantemo, Dendranthema X. grandiforum kitam, a partir de segmentos de tallo (Spanish) [Direct in vitro regeneration of Chrysanthemum, Dendranthema X. grandiforum kitam, from stem segments]. Ecosistemas y Recursos Agropecuarios 2008; 24: 219–227.

8. Gamborg OL, Miller RA, Ojima K. Nutrient requirements of suspension cultures of soybean root cells. Experimental Cell Research 1968; 50: 151–158.

9. R Core Team. R: A language and environment for statistical computing [Internet]. Vienna: R Foundation for Statistical Computing; 2017. Available from: ect.org/Junio2017.

10. Gunawardena AH, Sault K, Donnelly P, et al. Programmed cell death and leaf morphogenesis in Monstera obliqua (Araceae). Planta 2005; 221: 607–618.

11. Carvajal-Guillén MJ. Determinación del estado de desarrollo óptimo para la cosecha de Monstera deliciosa, Philodendron sp. cv. Xanadú y Philodendron sp. cv. Xantal (Spanish) [Determination of the optimum development stage for the harvest of Monstera deliciosa, Philodendron sp. cv. Xanadu and Philodendron sp. cv. Xantal] [BSc thesis]. Costa Rica: Universidad de Costa Rica; 2018. p. 55.

12. Pérez CA, Rojas JS, Vale MH. Biología y perspectiva de microorganismos endófitos asociados a plantas (Spanish) [Biology and perspective of endophytic microorganisms associated with plants]. Revista Colombiana de Ciencia Animal 2009; 1: 286–301.

13. Donini LP, Ferreira-Moura I, Guisso AP, et al. Preparo de lâminas foliares de aráceas ornamentais: Desinfestação com diferentes concentrações de hipoclorito de sódio (Portuguese) [Preparation of leaf blades of ornamental spiders: Disinfestation with different concentrations of sodium hypochlorite]. Arquivos Do Instituto Biológico de Sao Paulo 2005; 72: 517–522.

14. Rihan HZ, Al-Issawi M, Al-Swedi F, et al. The effect of using PPM plant preservative mixture) on the development of cauliflower microshoots and the quality or artificial seed produced. Scientia Horticulturae 2012; 141: 47–52.

15. Shimelis D. Effects of polyvinylpyrrolidone and activated charcoal to control effect of phenolic oxidation on in vitro culture Establishment Stage of Micropropagation of Sugarcane Saccharum Officinarum L. Journal of Applied Sciences Research 2015; 2: 52–57.

16. Valderrama-Alfaro S, Chico-Ruíz J, Quispe-Chávez J, et al. Regeneración in vitro de plantas de Solanum pimpinellifolium L. a partir de explantes foliares (Spanish) [In vitro regeneration of Solanum pimpinellifolium L. plants from foliar explants]. Biotecnología Vegetal 2011; 11(1): 15–25.

17. Desai C, Inghalihalli R, Krishnamurthy R. Micropropagation of Anthurium andraeanum—An important tool in floriculture. Journal of Pharmacognosy and Phytochemistry 2015; 4(3): 112–117.

18. Blanco M, Valverde R. Micropropagación de Philodendron sp. (posiblemente P. corcovadense) (Portuguese) [Micropropagation of Philodendron sp (possibly P. corcovadense)]. Agronomía Costarricense 2004; 28: 34–46.

19. Murillo-Gómez PA, Naranjo E, Callejas R, et al. Micropropagation of the native species Anthurium antioquiense Engl. for conservation purposes. Agronomía Colombiana 2014; 32: 334–340.

20. Wang H, Li M, Yang Y, et al. Histological and endogenous plant growth regulators changes associated with adventitious shoot regeneration from in vitro leaf explants of strawberry Fragaria 3 ananassa cv. ‘Honeoye’. Plant Cell Tissue and Organ Culture 2015; 123: 479–488.




DOI: https://doi.org/10.24294/th.v4i1.1795

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This site is licensed under a Creative Commons Attribution 4.0 International License.