Growth and photochemical efficiency of photosystem ii in seedlings of 2 varieties of Capsicum annuum L. inoculated with rhizobacteria or arbuscular mycorrhizal fungi

Ronald Ferrera-Cerrato, Alejandro Alarcón, Juan José Almaraz-Suárez, Julián Delgadillo-Martínez, Maribel Jiménez-Fernández, Oscar García-Barradas

Article ID: 1794
Vol 4, Issue 1, 2021

VIEWS - 580 (Abstract) 420 (PDF)

Abstract


An alternative for sustainable management in the cultivation of Capsicum annuum L. has focused on the use of plant growth promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi (AMF). This research selected PGPRPGPR and AMF based on their effect on Bell Pepper and Jalapeño bell pepper plants. Five bacterial strains isolated from different localities in the state of Mexico (P61 [Pseudomonas tolaasii], A46 [P. tolaasii], R44 [Bacillus pumilus], BSP1.1 [Paenibacillus sp.] and OLs-Sf5 [Pseudomonas sp.]) and 3 AMF treatments (H1 [consortium isolated from Chile rhizosphere in the state of Puebla], H2 [Rhizophagus intraradices] and H3 [consortium isolated from lemon rhizosphere from the state of Tabasco]). In addition, a fertilized treatment (Steiner solution 25%) and an absolute control were included. Jalapeño bell pepper “Caloro” and Bell Pepper “California Wonder” seedlings were inoculated with AMF at sowing and with CPB 15 days after emergence, and grown under controlled environment chamber conditions. In Jalapeño bell pepper, the best bacterial strain was P61 and the best AMF treatment was H1; in Bell Pepper the best strain was R44 and the best AMF were H3 and H1. These microorganisms increased the growth of jalapeño bell pepper and Bell Pepper seedlings compared to the unfertilized control. Likewise, P61 and R44 positively benefited the photosynthetic capacity of PSII.


Keywords


Mycorrhizal Fungi; Rhizobacteria; Growth Promotion

Full Text:

PDF


References


1. FAOSTAT. Food and Agriculture Organization of the United Nations Statistics Division [Internet]. 2013. Available from:

2. http://faostat3.fao.org/browse/Q/QC/S.

3. Ramírez J. El chile (Spanish) [The chili]. CONABIO. Biodiversitas 1996; 8: 8–14.

4. Gyaneshwar P, Kumar GN, Parekh LJ, et al. Role of soil microorganisms in improving P nutrition of plants. Plant and Soil 2002; 245: 83–93.

5. Salazar-Jara FI, Juárez-López P. Requerimiento macronutrimental en plantas de Chile (Capsicum annuum L.) (Spanish) [Macronutrient requirement in Chile plants (Capsicum annuum L.)]. CONACYT 2013; 2: 27–34.

6. Villarreal-Romero M, Hernández-Verdugo S, Sánchez-Peña P, et al. Efecto de cobertura del suelo con leguminosas en rendimiento y calidad del tomate (Spanish) [Effect of soil cover with legumes on tomato yield and quality]. Terra Latinoamericana 2006; 24(4): 549–556.

7. Diaz RJ, Rosenberg R. Spreading dead zones and consequences for marine ecosystems. Science 2008; 321(5891): 926–929.

8. Galloway JN, Townsend AR, Erisman JW, et al. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science 2008; 320(5878): 889–892.

9. Hoben JP, Gehl RJ, Millar N, et al. Nonlinear nitrous oxide (N2O) response to nitrogen fertilizer in on-farm corn crops of the US Midwest. Global Change Biology 2011; 17(2): 1140–1152.

10. Gomiero T, Pimentel D, Paoletti MG. Environmental impact of different agricultural management practices: Conventional vs. organic agriculture. Critical Reviews in Plant Sciences 2011; 30(10–2): 95–124.

11. Son JS, Sumayo M, Hwang YJ, et al. Screening of plant growth-promoting rhizobacteria as elicitor of systemic resistance against gray leaf spot disease in pepper. Applied Soil Ecology 2014; 73: 1–8.

12. Babalola OO. Beneficial bacteria of agricultural importance. Biotechnology Letters 2010; 32(11): 1559–1570.

13. Glick BR. Plant growth-promoting bacteria: Mechanisms and applications. Scientifica 2012; 2012: 1–15.

14. Lehmann A, Rillig MC. Arbuscular mycorrhizal contribution to copper, manganese and iron nutrient concentrations in crops—A meta-analysis. Soil Biology and Biochemistry 2015; 81: 147–158.

15. Marques APGC, Oliveira RS, Rangel AOSS, et al. Zinc accumulation in Solanum nigrum is enhanced by different arbuscular mycorrhizal fungi. Chemosphere 2006; 65(7): 1256–1263.

16. Smith SE, Manjarrez M, Stonor R, et al. Indigenous arbuscular mycorrhizal (AM) fungi contribute to wheat phosphate uptake in a semi-arid field environment, shown by tracking with radioactive phosphorus. Applied Soil Ecology 2015; 96: 68–74.

17. Ortas I. Effect of selected mycorrhizal inoculation on phosphorus sustainability in sterile and non-sterile soils in the Harran Plain in South Anatolia. Journal of Plant Nutrition 2003; 26(1): 1–17.

18. Rouphael Y, Cardarelli M, Colla G. Role of arbuscular mycorrhizal fungi in alleviating the adverse effects of acidity and aluminum toxicity in Zucchini squash. Scientia Horticulturae 2015; 188: 97–105.

19. Zhao R, Guo W, Bi N, et al. Arbuscular mycorrhizal fungi affect the growth, nutrient uptake and water status of maize (Zea mays L.) grown in two types of coal mine spoils under drought stress. Applied Soil Ecology 2015; 88: 41–49.

20. Castillo CR, Sotomayor SL, Ortiz CO, et al. Effect of arbuscular mycorrhizal fungi on an ecological crop of chili peppers (Capsicum annuum L.). Chilean Journal of Agricultural Research 2009; 69(1): 79–87.

21. Flores P, Fenoll J, Hellin P, et al. Isotopic evidence of significant assimilation of atmospheric-derived nitrogen fixed by Azospirillum brasilense co-inoculated with phosphate-solubilising Pantoea dispersa in pepper seedling. Applied Soil Ecology 2010; 46: 335–340.

22. Rueda-Puente EO, Murillo-Amador B, Castellanos-Cervantes T, et al. Effects of plant growth promoting bacteria and mycorrhizal on Capsicum annuum L. var. aviculare ([Dierbach] D’Arcy and Eshbaugh) germination under stressing abiotic conditions. Plant Physiology and Biochemistry 2010; 48(8): 724–730.

23. Sensoy S, Demir S, Turkmen O, et al. Responses of some different pepper (Capsicum annuum L.) genotypes to inoculation with two different arbuscular mycorrhizal fungi. Scientia Horticulturae 2007; 113(1): 92–95.

24. Kaya C, Ashraf M, Sonmez O, et al. The influence of arbuscular mycorrhizal colonisation on key growth parameters and fruit yield of pepper plants grown at high salinity. Scientia Horticulturae 2009; 121(1): 1–6.

25. Dell’Amico E, Cavalca L, Andreoni V. Improvement of Brassica napus growth under cadmium stress by cadmium-resistant rhizobacteria. Soil Biology and Biochemistry 2008; 40: 74–84.

26. Noori SMS, Saud MH. Potential plant growth-promoting activity of Pseudomonas sp. isolated from paddy soil in Malaysia as biocontrol agent. Journal of Plant Pathology & Microbiology 2012; 3(2): 2–5.

27. Govindasamy V, Senthilkumar M. Bacillus and Paenibacillus spp: Potential PGPR for sustainable agriculture. In: Maheshwari DK (editor). Plant growth and health promoting bacteria. Berlin, Heidelberg: Springer Berlin Heidelberg; 2011. p. 333–364.

28. Kumar A, Prakash A, Johri BN. Bacillus as PGPR in crop ecosystem. In: Maheshwari DK (editor). Bacteria in agrobiology crop ecosystems. Berlin Heidelberg: Springer-Verlag; 2011. p. 37–59.

29. Pineda-Mendoza DY. Potencial de tres cepas de rizobacterias como antagonistas de Rhizoctonia solani en Chile serrano (Capsicum annuum L.) (Spanish) [Potential of three strains of rhizobacteria as antagonists of Rhizoctonia solani in serrano Chile (Capsicum annuum L.)] [MSc thesis]. Mexico: Colegio de Posgraduados; 2015.

30. Böhm W. Root parameters and their measurement. In: Methods of studying root systems. Heidelberg: Springer Berlin; 1979. p. 125–138.

31. Phillips JM, Hayman DS. Improved procedures fir clearing and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. British Mycological Society 1970; 55: 158–161.

32. SAS Institute Inc. The SAS system for windows version 9.0. North Carolina: SAS Institute Inc. Cary; 2002.

33. Hartmann M, Frey B, Mayer J, et al. Distinct soil microbial diversity under long-term organic and conventional farming. The ISME Journal 2015; 9(5): 1177–1194.

34. Anith KN, Sreekumar A, Sreekumar J. The growth of tomato seedlings inoculated with co-cultivated Piriformospora indica and Bacillus pumilus. Symbiosis 2015; 65(1): 9–16.

35. Russo VM, Perkins-Veazie P. Yield and nutrient content of bell pepper pods from plants developed from seedlings inoculated, or not, with microorganisms. Hort Science 2010; 45(3): 352–358.

36. Egamberdiyeva D. The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Applied Soil Ecology 2007; 36(2–3):184–189.

37. Herman MAB, Nault BA, Smart CD. Effects of plant growth-promoting rhizobacteria on bell pepper production and green peach aphid infestations in New York. Crop Protection 2008; 27(6): 996–1002.

38. Huang X, Zhang N, Yong X, et al. Biocontrol of Rhizoctonia solani damping-off disease in cucumber with Bacillus pumilus SQR-N43. Microbiological Research 2012; 167(3): 135–143.

39. Padmavathi T, Dikshit R, Seshagiri S. Effect of Rhizophagus spp. and plant growth-promoting Acinetobacter junii on Solanum lycopersicum and Capsicum annuum. Brazilian Journal of Botany 2015; 38(2): 273–280.

40. Viruel E, Lucca ME, Siñeriz F. Plant growth promotion traits of phosphobacteria isolated from Puna, Argentina. Archives of microbiology 2011; 193(7): 489–496.

41. Xun F, Xie B, Liu S, et al. Effect of plant growth-promoting bacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) inoculation on oats in saline-alkali soil contaminated by petroleum to enhance phytoremediation. Environmental Science and Pollution Research 2015; 22(1): 598–608.

42. Adhya TK, Kumar N, Reddy G, et al. Microbial mobilization of soil phosphorus and sustainable P management in agricultural soils. Current Science 2015; 108: 1280–1287.

43. Dabrowska G, Baum C, Trejgell A, et al. Impact of arbuscular mycorrhizal fungi on the growth and expression of gene encoding stress protein-metallothionein BnMT2 in the non-host crop Brassica napus L. Journal of Plant Nutrition and Soil Science 2014; 177(3): 459–467.

44. Nandjui J, Rosin D, Voko R, et al. Assessment of the occurrence and abundance of mycorrhizal fungal communities in soils from yam (Dioscorea spp.) crop-ping fields in Dabakala, North Côte d’Ivoire. African Journal of Agricultural Research 2013; 8: 5572–5584.

45. Oliveira RS, Boyer LR, Carvalho MF, et al. Genetic, phenotypic and functional variation within a Glomus geosporum isolate cultivated with or without the stress of a highly alkaline anthropogenic sediment. Applied Soil Ecology 2010; 45(1): 39–48.

46. Kang SH, Cho HS, Cheong H, et al. Two bacterial entophytes eliciting both plant growth promotion and plant defense on pepper (Capsicum annuum L.). Journal of Microbiology and Biotechnology 2007; 17(1): 96–103.

47. Díaz VP, Ferrera-Cerrato R, Almaraz-Suárez JJ, et al. Inoculación de bacterias de crecimiento en lechuga. Terra Latinoamericana 2001; 19: 327–335.

48. Brutti L, Alvarado P, Rojas T, et al. Tomato seedling development is improved by a substrate inoculated with a com-bination of rhizobacteria and fungi. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science 2015; 65(2): 170–176.

49. Smith SE, Smith FA. Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia 2012; 104(1): 1–13.

50. Garg N, Chandel S. Arbuscular mycorrhizal networks: Process and functions. A review. Agronomy for Sustainable Development 2010; 30: 581–599.

51. Aguirre-Medina JF, Kohashi-Shibata J. Dinámica de la colo-nización micorrízica y su efecto sobre los componentes delrendimiento y contenido de fósforo en fríjol común (Spanish) [Dynamics of mycorrhizal colonization and its effect on yield components and phosphorus content in common beans]. Agricultura Técnica en México 2002; 28(1): 23–33.

52. Soti PG, Jayachandran K, Koptur S, et al. Effect of soil pH on growth, nutrient uptake, and mycorrhizal colonization inexotic invasive Lygodium microphyllum. Plant Ecology 2015; 216(7): 989–998.

53. Zhang M, Tang S, Huang X, et al. Selenium uptake, dynamic changes in selenium content and its influence on photosynthesis and chlorophyll fluorescence in rice (Oryza sativa L.). Environmental and Experimental Botan 2014; 107: 39–45.

54. Moreno SG, Vela HP, Álvarez MOS. La fluorescencia de la clorofilaa como herramienta en la investigación de efectos tóxicos en elaparato fotosintético de plantas y algas (Spanish) [Chlorophyll fluorescence as a tool in the investigation of toxic effects on the photosynthetic apparatus of plants and algae]. Revista de Educación Bioquímica 2008; 27(4): 119–129.

55. Nakano H, Makino A, Mae T. The effect of elevated partial pressures of CO2, on the relationship between photosynthetic capacity and N content in rice leaves. Plant Physiology 1997; 115(1): 191–198.

56. Elhindi KM, El-Din AS, Elgorband AM. The impact of arbuscular mycorrhizal fungi in mitigating salt-induced adverse effects in sweet basil (Ocimum basilicum L.). Saudi Journal of Biological Sciences 2017; 24(1): 170–179.

57. Goicoechea N, Baslam M, Erice G, et al. Increased photosynthetic acclimation in alfalfa associated with arbuscular mycorrhizal fungi (AMF) and cultivated in greenhouse under elevated CO2. Journal of Plant Physiology 2014; 171(18): 1774–1781.

58. Kloepper JW, Gutierrez-Estrada A, Mclnroy JA. Photoperiod regulates elicitation of growth promotion but not induced resistance by plant growth-promoting rhizobacteria. Canadian Journal of Microbiology 2007; 53(2): 159–167.

59. Swain MR, Naskar SK, Ray RC. Indole-3-acetic acid production and effect on sprouting of yam (Dioscorea rotunata L.) minisetts by Bacillus subtilis isolated from culturable cowdung microflora. Polish Journal of Microbiology 2007; 56(2): 103–110.

60. Zubek S, Turnau K, Tsimilli-Michael M, et al. Response of endangered plant species to inoculation with arbuscular mycorrhizal fungi and soil bacteria. Mycorrhiza 2009; 19(2): 113–123.

61. Strasser RJ, Tsimilli-Michael M, Srivastava A. Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou GC (editor). Chlorophyll a fluorescence: A signature of photosynthesis, advances in photosynthesis and respiration series. Rotterdam: Kluwer Academic; 2004. p. 321–362.

62. Alarcón A, Ferrera-Cerrato R. Arbuscular mycorrhizae management on fruit plant propagation systems. Terra Latinoamericana 1999; 17(3): 179–191.

63. Hess JL, Shiffler AK, Jolley VD. Survey of mycorrhizal colonization in native, open-pollinated, and introduced hybrid maize in villages of Chiquimula, Guatemala. Journal of Plant Nutrition 2005; 28(10): 1843–1852.

64. Armada E, Probanza A, Roldán A, et al. Native plant growth promoting bacteria Bacillus thuringiensis and mixed or individual mycorrhizal species improved drought tolerance and oxidative metabolism in Lavandula dentata plants. Journal of plant physiology 2016; 192: 1–12.

65. Mohamed AA, Eweda WEE, Heggo AM, et al. Effect of dual inoculation with arbuscular mycorrhizal fungi and sulphur and sulphur-oxidising bacteria on onion (Allium cepa L.) and maize (Zea mays L) grown in sandy soil under greenhouse conditions. Annals of Agricultural Sciences 2014; 59(1): 109–118.




DOI: https://doi.org/10.24294/th.v4i1.1794

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This site is licensed under a Creative Commons Attribution 4.0 International License.