The progress of transgenic cucumber mediated by Agrobacterium tumefaciens

Liang Chai, Huaifu Fan, Chen Liu, Changxia Du

Article ID: 1791
Vol 3, Issue 1, 2020

VIEWS - 739 (Abstract) 536 (PDF)

Abstract


Cucumis sativus is an important vegetable crop in the world. Agrobacterium mediated transgenic technology is an important means to study plant gene function and variety improvement. In order to further accelerate the transgenic research and breeding process of cucumber, aiming at the Agrobacterium mediated genetic transformation method of cucumber, this paper expounds the research progress and existing problems of Agrobacterium mediated transgenic cucumber from the aspects of influencing factors of cucumber regeneration ability, genetic transformation conditions and various added substances in the process, and prospects the future of improving the efficiency of cucumber genetic transformation and the application of safety screening markers, in order to provide reference for cucumber stress resistance breeding and fruit quality improvement.


Keywords


Cucumber; Transgenic; Regeneration Ability; Genetic Transformation Efficiency

Full Text:

PDF


References


1. Zhang Z, Li X, Ma S, et al. A protocol for Agrobacterium-mediated transformation of cucumber (Cucumis sativus L.) from cotyledon explants. Plant Biotechnology Reports 2017; 9(6): 405–416.

2. Satou M, Imanishi S, Hiura I. In vitro formation from hypocotyl and hypocotyl callus of Cucumis sativus L. Japanese Journal of Breeding 1979; 29(1): 33–38.

3. Wehner TC, Locy RD. In vitro adventitious shoot and root formation of cultivars and lines of Cucumis sativus L. Hort Science 1981; 16(6): 759–760.

4. Wang Y, Gu X, Zhang S, et al. Transformation of RNAi vector in cucumber (Cucumis sativus) in vitro by Agrobacterium tumefaciens-mediated transfection. Chinese Bulletin of Botany 2014; 49(2): 183–189.

5. Ren D, Chen F, Wang H, et al. Construction of expression vector of defense genes CsHIR1 from cucumber and its genetic transformation research. Acta Agriculturae Boreali-occidentalis Sinica 2017; 26(2): 255–261.

6. Pan L. Cloning, transformation and functional stress of csnr gene in vitro plantlet analysis under NO3 cucumber [Master’s thesis]. Tai’an (China): Shandong Agricultural University; 2017.

7. Liu Y. Study on transfer of Csgrx4 gene by arobacterium-mediation into cucumber [Master’s thesis]. Yangling: Northwest A&F University; 2016.

8. Tang H. Genetic transformation and functional analysis of the gene controlling white immature fruit skin color in cucumber [Master’s thesis]. Wuhan: Huazhong Agricultural University; 2018.

9. Liu H. A modified protocol of Agrobacterium-mediated transformation and map-based cloning and functional analysis of W gene controlling white immature fruit color in cucumber [PhD thesis]. Yangling: Northwest A&F University; 2018.

10. Liu P, Jiang Z, Wang M, et al. Expression vector construction of rubisco activase gene CsRCA and genetic transformation to cucumber. Acta Horticulturae Sinica 2012; 39(5): 869–878.

11. Ni L. Genetic transformation of cucumber (Cucumis sativus L.) using RNAi vector with CsEXP10 gene [Master’s thesis]. Xinxiang: Henan Institute of Science and Technology; 2017.

12. Du S, Wei H, Wei A, et al. Miaolin, jiyinxin he waizhiti leixin dui huanggua liti qiguan fasheng de yingxiang (Chinese) [Effects of seedling stage, genotype and explant type on in vitro somatic organogenesis of cucumber]. Tianjin Agricultural Sciences 2000; 6(4): 1–5.

13. Zhang R, Gu X, Wang Y, et al. Regeneration system establishment from cotyledons in different cucumber (Cucumis sativus L.) genotypes. Acta Agriculturae Boreali-smica 2010; 25(S1): 50–54.

14. An Y. Study on regeneration and genetic transformation in cucumber (Cucumis sativus L.) [Master’s thesis]. Yangzhou: Yangzhou University; 2013.

15. Ding F. Research on influence factors of in vitro regeneration of cucumber [Master’s thesis]. Hefei: Anhui Agricultural University; 2014.

16. Li L, Meng Y, Zhang L, et al. Study on optimization of agrobacterium-mediated transformation system of cucumber. Acta Agriculturae Boreali-Sinica 2015; 30(5): 115–121.

17. Wang Y, Zhou G, Zhu S, et al. Genetic analysis and identification of a candidate gene associated with in vitro regeneration ability of cucumber. Theoretical Applied Genetics 2018; 131(12): 2663–2675.

18. Li Y. Establishment of regeneration system and Agrobacterium-mediated genetic transformation protocol in cucumber (Cucumis sativus L.) [Master’s thesis]. Xinxiang: Henan Institute of Science and Technology; 2016.

19. Wu Z. Establishment of regeneration in vitro and genetic transformation system in cucumber (Cucumis sativus L.) [Master’s thesis]. Nanjing: Nanjing Agricultural University; 2012.

20. Wang Y, Chen L, Pan J, et al. Establishment of high effective regeneration system in cucumber (Cucumis sativus L.) and agrobacterium tumefaciens mediated genetic transformation. Journal of Shanghai Jiaotong University (Agricultural Science) 2006; 24(2): 152–156, 164.

21. Jia J, Si L, Han G, et al. Butong jiyinxin huanggua liti zaisheng jiqi yingxiang yinsu de yanjiu (Chinese) [Regeneration in vitro and its influential factors of cucumber (Cucumis sativus L.)]. Journal of Henan Agricultural Sciences 2008; 31(6): 99–102.

22. Zhong H, Li Y, Chen X, et al. Optimization of regeneration system in Cucumis sativus L. Chinese Agricultural Science Bulletin 2015; 31(10): 80–86.

23. Bie B, Huang D, Pan J, et al. Effects of seedling stages on regeneration from cotyledonary node of cucumber (Cucumis sativus L.) and genetic transformation efficiency. Journal of Shanghai Jiaotong University (Agricultural Science) 2013; 31(6): 55–60.

24. Huang Y, Yin K, Yue C. Optimum combination of hormone concentration during callus subculture of cucumber. Acta Laser Biology Sinica 2014; 23(1): 83–89.

25. Liu C. Identification and functional analysis of the Propamcarb-related gene CsDIR16 in cucumber [PhD thesis]. Harbin: Northeast Agricultural University; 2017.

26. Zhang S. Studies on regeneration and Agrobacterium-mediated gentic transformation of cucumber (Cucumis sativus L.) [Master’s thesis]. Taian: Shandong Agricultural University; 2011.

27. Yang L, Liu H, Zhao J, et al. Little Leaf (LL) encodes a WD40 repeat domain-containing protein associated with organ size variation in cucumber. The Plant Journal 2018; 95(5): 834–847.

28. Du Y, Zhao X, Su F. Liangzhong jiyinxin huanggua yushangzuzhi de youdao (Chinese) [Induction of two genotypes cucumber callus]. Northern Horticulture 2016; (11): 96–99.

29. Kose E, Koç NK. Agrobacterium-mediated transformation of cucumber (Cucumis sativus L.) and plant regeneration. Biotechnology & Biotechnological Equipment 2014; 17(2): 56–62.

30. Hou A, Zhu Y, Yang A, et al. Main factors influencing the frequency of direct organogenesis of cucumber in vitro. Acta Horticulturae Sinica 2003; 30(1): 101–103.

31. Chang H, Ni L, Sun Y, et al. Factors influencing Agrobacterium-mediated genetic transformation of cucumber. Northern Horticulture 2018; (2): 9–14.

32. Xu N, Chu J, Xia H, et al. Establishment of genetic transformation system of cucumber ‘New Jinchun 4’. Journal of Tropical and Subtropical Botany 2010; 18(6): 679–684.

33. Wang Y, Gu X, Zhang S. Effect of dark culture on enzyme and soluble protein variance during cucumber cotyledon node regeneration. Acta Botanica Boreali-Occidentalia Sinica 2011; 31(9): 1793–1798.

34. Huang D, Bie B, Pan J, et al. Optimum for regeneration and transformation system in Cucumis sativus L. Journal of Shanghai Jiaotong University (Agricultural Science) 2012; 30(2): 42–47.

35. Wang Y, Gu X, Zhang S, et al. Influence of Lipoic acid on transformation of cucumber cotyledon in vitro by Agrobacterium tumefaciens. Acta Agriculturae Boreali-Sinica 2012; 27(S1): 51–56.

36. Nanasato Y, Konagaya KI, Okuzaki A, et al. Improvement of Agrobacterium-mediated transformation of cucumber (Cucumis sativus L.) by combination of vacuum infiltration and co-cultivation on filter paper wicks. Plant Biotechnology Reports 2013; 7(3): 267–276.

37. Lv J. Suppression of cucumber stachyose synthase gene (CsSTS) inhibits phloem loading and reduces low temperature stress tolerance [PhD thesis]. Beijing: China Agricultural University; 2017.

38. Ning Y, Li L, Miao Y, et al. Influence of acetosyringone concentration and pH of co-culture medium on efficiency of cucumber genetic transformation. China CucurbitsM and Vegetables 2013; 26(5): 6–9.

39. Yang L. Engineering non-transgenic gynoecious cucumber using an improved transformation protocol and optimized CRISPR/CAS9 system [PhD thesis]. Beijing: Chinese Academy of Agricultural Sciences; 2018.

40. Wang S, Ku S, Ye X, et al. Current status of genetic transformation technology developed in cucumber (Cucumis sativus L.). Journal of Integrative Agriclture 2015; 14(3): 469–482.

41. Wu J, Liu J, Ma X, et al. Obtain the transgenic cucumber of the fusion gene of region A of PAc gene of streptococcus mutans and B subunit of cholera toxin. Journal of Oral Science Research 2016; 32(9): 902–906.

42. Yang H, Liu X, Liang G, et al. Establishment of genetic transformation system by Agrobacterium tumefaciens of cucumber. Southwest China Journal of Agricultural Sciences 2014; 27(4): 1656–1660.

43. Zhang S, Wang X, Yang X, et al. Variation of endogenous phytohormone concentration in cotyledonary node calli during cucumber regeneration. Acta Agriculturae Boreali-Occidentalis Sinica 2011; 20(5): 153–157.

44. Cao L, Zhao L, Tang Y, et al. Xiaosuanyin dui huanggua liti ziye peiyangya zaisheng de cujin xiaoying (Chinese) [Stimulation effect of silver nitrate on shoot regeneration in cotyledon tissue culture of cucumber]. Journal of Gansu Agricultural University 2001; 36(2): 168–171.

45. Cheng Z, Schnurr J, Kapaun J. Timentin as an alternative antibiotic for suppression of Agrobacterium tumefaciens in genetic transformation. Plant Cell Reports 1998; 17(8): 646–649.

46. Zhao F, Yin X, Hong W, et al. Tissue culture and rapid propagation of Rhododendron moulmainense. Plant Physiology Journal 2017; 53(9): 1666–1672.

47. He Z, Duan Z, Liang W, et al. Mannose selection system used for cucumber transformation. Plant Cell Reports 2006; 25(9): 953–958.

48. Hu B, Li D, Liu X, et al. Engineering non-transgenic gynoecious cucumber using an improved transformation protocol and optimized CRISPR/Cas9 system. Molecular Plant 2017; 10(12): 1575–1578.

49. Wang G, Zhang X, Wang P, et al. Huanggua ziyejie budingya de youdao ji dui ganlutang naixing de yanjiu (Chinese) [The induction and tolerance to mannose of adventitious bud derived from cotyledonary nodes in cucumber]. Crops 2014; (6): 32–35.

50. Wei A, Du S, Han Y, et al. Study on transformation technology through agrobacterium tumefaciens mediation in living cucumber plants. Molecular Plant Breeding 2014; 12(4): 796–801.

51. Anjum NA, Rodrigo MAM, Moulick A, et al. Transport phenomena of nanoparticles in plants and animals/humans. Environmental Research 2016; 151: 233–243.




DOI: https://doi.org/10.24294/th.v3i1.1791

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This site is licensed under a Creative Commons Attribution 4.0 International License.