Biostimulants in vegetable seeds submitted to germination and vigor tests
Vol 3, Issue 1, 2020
VIEWS - 7538 (Abstract) 5130 (PDF)
Abstract
The use of bioproducts, economically viable, are of extreme importance in the protection and stimulation of germination in vegetable crops. This work evaluated the effect of the microorganisms Azospirillum brasiliense, Bacillus sub-tilis, Trichoderma harzianum and the commercial seed treatment product (Fipronil + Pilaclostrobin and Methyl Thiophanate) on seeds and seedlings of lettuce (Lactuca sativa), carrot (Daucus carota) and tomato (Solanum lycopersicum). The seeds were inoculated before being submitted to the germination test. The chemical treatment proved ineffective in protecting the seed of all crops and stimulating germination. T. harzianum increased the germination index of lettuce seeds, had better values in root system size in tomato crop and stimulated radicle emission in carrot. B. subtilis stood out in dry matter accumulation in tomato crop. The microorganisms B. subtilis and T. harzianum present potential for vegetable seed treatment.
Keywords
Full Text:
PDFReferences
1. De Melo PCT, Vilela NJ. Importance of the Brazilian production chain of vegetables. 13 Reunião Ordinária da Câmara Setorial da Cadeia Produtiva de Hortaliças. Brasília, DF: MAPA; 2017.
2. Nascimento WM, Lima LB. Osmotic conditioning of eggplant seeds aiming germination under low temperatures. Revista Brasileira de Sementes 2008; 30(2): 224–227.
3. doi: 10.1590/S010131222008000200029.
4. Rodo AB, Perleberg CS, Torres SB, et al. Physiological quality and seed size of carrot seeds. Scientia Agricola 2001; 58(1): 201–204.
5. doi: 10.1590/S0103-90162001000100031.
6. Luz JMQ, Bittar CA, De Oliveira RC, et al. Performance and genetic divergence of tomato genotypes for industrial processing. Horticultura Brasileira 2016; 34(4). doi: 10.1590/hb.v34i4.723.
7. Souza JR, Rebouças TNH, Luz JMQ, et al. Potentiality of biological fungicides in the control of tomato rash. Horticultura Brasileira 2014; 32(1): 115–119.
8. Bufalo J, Amaro ACE, Araújo HS, et al. Stratification periods in the germination of lettuce (Lactuca sativa L.) seeds under different light and temperature conditions. Semina: Ciencias Agrarias 2012; 33(3): 931–940.
9. doi: 10.5433/16790359.2012v33n3p931.
10. Deng Z, Song S. Sodium nitroprusside, ferricyanide, nitrite and nitrate decrease the thermo-dormancy of lettuce seed germination in a nitric oxide-dependent manner in light. South African Journal of Botany 2012; 78: 139146.
11. doi: 10.1016/j.sajb.2011.06.009.
12. Vieira EL, Castro PRC. Biostimulant action on seeds germination, seedlings vigor, root growth and yield of soybean (Glycine max (L.) Merrill), common beans (Phaseolus vulgaris L.) and rice (Oryza sativa L.). Revista Brasileira de Sementes 2001; 3(2): 222–228.
13. doi: 10.17801/0101-3122/rbs.v23n2p222-228.
14. de Sousa SM, De Oliveira CA, Gomes EA, et al. Avaliação de plântulas de milho em solução nutritiva sob a ação de bioestimulantes à base de microrganismos (Portuguese) [Evaluation of corn seedlings in nutrient solution under the action of biostimulants based on microorganisms]. Bento Gonçalves: Anais do Congresso Nacional de Milho e Sorgo; 2016.
15. Burdman S, Okon Y, Jurkevitch E. Surface characteristics of Azospirillum brasilense in relation to cell aggregation and attachment to plant roots. Critical Reviews in Microbiology 2000; 26(2): 91–110. doi: 10.1080/10408410091154200.
16. Marin VA, Baldani VLD, Teixeira KDS, et al. Fixação biológica de nitrogen: Bacterias fixadoras de nitrogen de importância para a agricultura tropical (Portuguese) [Biological nitrogen fixation: Nitrogen fixing bacteria of importance for tropical agriculture]. Brasília, DF: EMBRAPA-CNPAB; 1999. p. 32.
17. Batista NS. Diversificação de cultivos de hortaliças associadas ao uso de insumos para fertilidade do solo, em sistema orgânico de produção (Portuguese) [Diversification of vegetable crops associated with the use of inputs for soil fertility, in an organic production system] [PhD thesis]. Seropédica (RJ): Universidade Federal Rural do Rio de Janeiro, Instituto de Agronomia; 2016. p. 68.
18. Hungria M, De Andrades SD, Prombanza A, et al. Isolation and characterization of neweficient and competitive bean (Phaseolus vulgaris L.) rhizobia from Brazil. Soil Biology & Biochemistry 2000; 32(11–12): 1515–1528.
19. doi: 10.1016/S0038-0717(00)00063-8.
20. Lima ODR, De Oliveira LJMG, Silva MSBSS, et al. In vitro antifungal action of Bacillus sp. isolates on Fusarium oxysporum f. sp. lycopersici. Revista Caatinga 2014; 27(4): 57–64.
21. Bernardi MF. Promotores de crescimento na produção de mudas de alface com e sem fertirrigação (Portuguese) [Growth promoters in the production of lettuce seedlings with and without fertigation]. Cerro Largo (RS): Federal University of the Southern Border; 2017. p. 39.
22. Braga JG. Efficiency of Bacillus subtilis in biocontrol of phytopathogens and plant growth promoter [PhD thesis]. Gurupi (TO): Universidade Federal do Tocantins; 2015. p. 87.
23. De Araújo F, Marchesi G. Use of Bacillus subtilis in the control of meloidoginosis and growth promotion of tomato plant. Ciência Rural 2009; 39(5): 1558–1561.
24. Aias CO, Martins I, Da Silva JBT, et al. Antagonistic action and bioactive metabolites of Trichoderma spp. against the pathogens Sclerotium rolfsii and Verticillium dahliae. Summa Phytopathologica 2014; 40(1): 34–41.
25. doi: 10.1590/S0100-54052014000100005.
26. Nakagawa J. Testes de vigor baseada na avaliação de plântulas (Portuguese) [Vigor tests based on seedling evaluation]. In: Krzyzanowski FC, Vieira RD, França NTJB (editors). Vigor de sementes. Chapter Seed Vigor: Concepts and tests. Londrina: ABRATES; 1999. p. 2–21.
27. Ferreira DF. Sisvar: A program for statistical analysis and teaching. Ciência e Agrotecnologia 2008; 6: 36–41.
28. Machado DFM, Parzianello FR, Silva ACF, et al. Trichoderma in Brazil: The fungus and the bioagent. Revista de Ciencias Agrarias 2012; 35(26): 274–288.
29. Baugh CL, Escobar B. The genus Bacillus and genus Trichoderma for agricultural bio-augmentation. Rice Farming Magazine 2007; 1(4): 1–4.
30. Pedroso DC, Muniz MFB, De Tunes LM, et al. Quality of stored carrot seeds after coating with fungicide, biological powder and polymer. Journal of Biosciences 2014; 30(2): 746–756.
31. Dognini AC. Interferences of Trichoderma spp. and Bacillus spp. applications on carrot seed quality [PhD thesis]. Piracicaba (SP): University of São Paulo Escola Superior de Agricultura “Luiz de Queiroz”; 2017. p. 94.
32. doi: 10.11606/D.11.2017.tde-19102017-105020.
33. Fukamil J, Cerezini P, Hungary M. Azospirillum: Benefits that go far beyond biological nitrogen fixation. AMB Express 2018; 8(1): 1–12.
34. doi: 10.1186/s13568-018-0608-1.
35. Agrofit. Pesticide-Phytosanitary System [Internet]. 2019. Available from: http://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons.
36. Ethur LZ, Blume E, Muniz MFB, et al. Trichoderma harzianum in the development and protection of seedlings against tomato fusarium. Science and Natura 2008; 30(2): 57–69.
37. doi: 10.5902/2179460X9837.
38. Hashem A, Tabassum B, Alaah EFA. Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi Journal of Biological Sciences 2019; 26: 1291–1297.
39. doi: 10.1016/j.sjbs.2019.05.004.
40. Junges L, Bastos BO, Toebe M, et al. Water restriction and filming in the microbiolization of corn seeds with Trichoderma spp. Comunicata Scientiae 2014; 5(1): 18–25. doi: 10.14295/cs.v5i1.386.
41. Cotrim MF, Alvarez RCF, Seron ACC. Physiological quality of wheat seeds in response to Azospirillum brasilense and humic acid application. Brazilian Journal of Biosystems Engineering 2016; 10(4): 349–357. doi: 10.18011/bioeng2016v10n4p349-357
42. Diniz KA, Oliveira JA, Guimarães RM, et al. Incorporation of microorganisms, amino acids, micronutrients and growth regulators in lettuce seeds by the filming technique. Revista Brasileira de Sementes 2006; 28(3): 37–43.
43. Vasconcelos ACP, Siqueira TP, Lana RMQ, et al. Seed iniculation with Azospirillum brasiliense and N-fertilization of corn in the Cerrado biome. Revista Ceres 2016; 63(5): 732–740.
44. doi: 10.1590/0034-737x201663050019.
DOI: https://doi.org/10.24294/th.v3i1.1789
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This site is licensed under a Creative Commons Attribution 4.0 International License.