Combination of phosphorus mobilizing and solubilizing fungi with phosphoric rocks and volcanic materials for growth promotion of lettuce (Lactuca sativa L.) plants
Vol 3, Issue 1, 2020
VIEWS - 690 (Abstract) 529 (PDF)
Abstract
Arbuscular mycorrhizal fungi (AMF) increase the uptake of soluble phosphates, while phosphorus solubilizing fungi (S) promote the solubilization of insoluble phosphate complexes, together benefiting plant nutrition. The use of these organisms in combination with minerals or rocks that provide nutrients is another alternative to maintain crop productivity. The objective of this work was to combine AMF and S with pyroclastic materials (ashes and pumicites) from the Puyehue volcano and phosphoric rocks (PR) from the Río Chico Group (Chubut) and to evaluate the performance of these mixtures as substrates for potted production of Lactuca sativa. To formulate the substrates, a mixture of Ter-rafertil® with ashes was used as a base. Penicillium thomii was the S and spores of the fungus Rhizophagus intraradices (AEGIS® Irriga) served as the source of AMF. Various combinations of microorganisms and the addition or not of RP were evaluated. The treatments were: (1) substrate; (2) substrate + AMF; (3) substrate + S; (4) substrate + AMF + S; (5) substrate: PR; (6) substrate: PR + AMF; (7) substrate: PR + S, and (8) substrate: PR + AMF + S. There were 3 replicates per treatment. The parameters evaluated were total and assimilable P content in the substrate, P in plant tissue and dry biomass. All of them were significantly higher in the plants grown in the substrate added with PR and inoculated with S and AMF. This work confirms that the S/AMF combination with volcanic ashes from Puyehue and PR from Grupo Río Chico formulated with a commercial substrate promote the growth of L. sativa. Thus, it is possible to increase the added value of geomaterials of national origin.
Keywords
Full Text:
PDFReferences
1. Arrieta AM, Iannone LJ, Scervino JM, et al. A foliar endophyte increases the diversity of phosphorus-solubilizing rhizospheric fungi and mycorrhizal colonization in the wild grass Bromus auleticus. Fungal Ecology 2015; 17: 146–154.
2. Buscot F, Varma A. Microorganisms in soils: Roles in genesis and functions. In: Varma AJ, Buscot F (editors). Berlin Heidelberg: Springer-Verlag; 2005. p. 419.
3. Tripura CB, Sashidhar B, Podile AR. Transgenic mineral phosphate solubilizing bacteria for improved agricultural productivity. In: Satyanarayana T, Johri BN (editors). Microbial diversity current perspectives and potential applications. Delhi: I.K. International Pvt Ltd; 2005. p. 375–392.
4. Della Monica IF, Saparat MCN, Godeas AM, et al. The co-existence between DSE and AMF symbionts affects plant P pools through P mineralization and solubilization processes. Fungal Ecology 2015; 17: 10–17.
5. Della Monica IF, Stefanoni Rubio PJ, Cina RP, et al. Effects of the phosphate-solubilizing fungus Talaromyces flavus on the development an efficiency of the Gigaspora rosea-Triticum aestivum symbiosis. Symbiosis 2014; 64(1): 25–32.
6. Hinsinger P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes a review. Plant and Soil 2001; 237(2): 173–195.
7. Whitelaw MA. Growth promotion of plants inoculated with phosphate-solubilising fungi. Advances in Agronomy 2000; 69: 100–153.
8. Chalharn M, Lumyong S. Phosphate solubilization potential and stress tolerance of rhizobacteria from rice soil in Northem Thailand. World Journal of Microbiology and Biotechnology 2009; 25(2): 305–314.
9. Velázquez MS, Elíades L, Irrazabal G, et al. Micobización con Glomus mosseae y Aspergillus niger en plantas de Lycopersicon esculentum (Spanish) [Mycobization with Glomus mosseae and Aspergillus niger in Lycopersicon esculentum plants]. Journal of Agricultural Technology 2005; 1: 315–326.
10. Kucey RMN, Janzen HH, Legget ME. Microbial mediated increases in plant available phosphorus. Advances in Agronomy 1989; 42: 199–228.
11. Vence LB. Disponibilidad de agua-aire en sustratos para plantas (Spanish) [Air-water availability in plant substrates]. Ciencia del Suelo 2008; 26(2): 105–114.
12. Gaitán J, Raffo F, Ayesa J, et al. Zonificación del área afectada por cenizas volcánicas en Río Negro y Neuquén. In: INTA (editor). Bariloche: Publicaciones Regionales; 2011. p. 4–7.
13. Barbaro LA, Mazzoni A, Karlanian MA, et al. Cenizas del volcán Puyehue como sustrato para plantas. Asociación Argentina de Horticultura 2014; 81: 44–53.
14. Schalamuk S, Pelliza S, Scorsetti AC, et al. Cenizas volcánicas del complejo Puyehue-Cordón Caulle, como vehículo de conidios de Beauveria bassiana (Ascomycota, Hypocreales): potencialidad como bio-insecticida. XIII Congreso Argentino de Microbiología; 2013 Sep 23–26; Buenos Aires. La Plata: Asociación Argentina de Sedimentología; 2013.
15. Schalamuk S, Pelliza S, Scorsetti AC, et al. Pyroclastic material from the Puyehue-Cordon-Caulle Volcanic Complex Chile as carrier of Beauveria bassiana conidia potential utilization in mycoinsecticide formulations. Journal Agricultural Chemistry and Environment 2014; 3: 14–21.
16. Schalamuk S, Otero JI, Sy V, et al. Rocas fosfóricas del Grupo Río Chico (Chubut): Alternativas para su aplicación directa (Spanish) [Phosphoric rocks from the Río Chico Group (Chubut): Alternatives for direct application]. XIV Reunión Argentina de Sedimentología; 2014 Sep 1–5; Puerto Madryn. La Plata: Asociación Argentina de Sedimentología; 2014.
17. Raigemborn MS, Krause JM, Bellosi E, et al. Stratigraphic redefinition of Río Chico Group (Early Paleogene) in the north of the Golfo San Jorge basin, Chubut. Revista de la Asociación Geológica Argentina 2010; 67: 239–256.
18. Smith SE, Read DJ. Mycorrhizal dimbiosis. London, UK: Academia Press; 2008.
19. Gyaneshwar P, Naresh Kumad G, Parekh LJ, et al. Role of soil microorganisms in improving P nutrition of plants. In: Adu-Gyamfi JJ (editor). Food security in nutrient-stressed environments: Exploiting plants genetic, capabilities. Andra Pradesh: Kluwer Academic Publishers; 2002. p. 1–3.
20. Cabello M, Irrazabal G, Bucsinszky AM, et al. Effect of an arbuscular mycorrhizal fungus, Glomus mosseae, and a rock-phosphate-solubilizing fungus, Penicillium thomii, on Mentha piperita growth in a soilless medium. Journal of Basic Microbiology: An International Journal on Biochemistry, Physiology, Genetics, Morphology, and Ecology of Microorganisms 2005; 45(3): 182–189.
21. Walker C, Myze W, McNabb HS. Populations of endogonaceous fungi at two populations in central Iowa. Canadian Journal of Botany 1982; 60: 2518–2529.
22. McLellan GH, Gremillion LR. Evaluation of phosphatic raw materials. In: Gremillion LR (editor). The role of phosphorus in agriculture. Madison: Estados Unidos; 1980. p. 43–80.
23. Chien SH, Hammond LL. A comparison of various laboratory methods for predicting the agronomic potential of phosphate rocks for direct application. Soil Science Society of America Journal 1978; 42(6): 935–939.
24. Pancotto VA, Sala OE, Cabello MN, et al. Solar UV-B decreases decomposition in herbaceous plant liter in Tierra del Fuego, Argentina, potential role of an altered decomposer community. Global Change Biology 2003; 9(10): 1465–1474.
25. Phillips JM, Hayman DS. Improved procedures for clearing roots and staining parasite and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society 1970; 55(1): 158–160.
26. McGonigle TP, Miller MH, Evans DG, et al. A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytologist 1990; 115(3): 495–501.
27. Di Rienzo JA, Casanoves F, Balzarini MG, et al. InfoStat versión Grupo InfoStat, FCA. Córdoba: Universidad Nacional de Córdoba; 2009.
28. Velázquez MS, Cabello M. Mycobization as a biotechnological tool: A challenge. In: Thangadurai D, Busso CA, Hijri M (editors). Micorrhizal biotechnology. Nueva Delhi: CRC Press; 2010.
29. Osorio NW, Habte M. Strategies for utilizing arbuscular mycorrhizal fungi and phosphate-solubilizing microorganisms for enhanced phosphate uptake and growth of plants in the soils of the tropics. In: Khan MS, Saidi M, Musarrat A (editors). Microbial strategies for crop improvement. Berlin: Springer; 2009. p. 325–351.
30. Osorio NW, Habte M. Synergistic effect of a phosphate solubilizing fungus and an arbuscular mycorrhizal fungus on Leucaena seedlings in an Oxisol fertilized with rock phosphate. Botany 2013; 91(4): 274–81.
31. Goenadi DH, Siswanto S, Sugiarto Y. Bioactivation of poorly soluble phosphate rocks with phosphorus solubilizing fungus of soil. Soil Science Society of America Journal 2000; 64(3): 927–932.
32. Salgado-Barreiro CS, Bravo-Patiño A, Wang E, et al. Effect of the inoculation with Glomus intraradices and nitrogen fertilization on growth of strawberry plants. Scientia Agropecuaria 2012; 3(2): 171–179.
33. Kapoor KK. Phosphate mobilization through soil microorganism. In: Behl RK, Khurama AL, Dougra RC (editors). Plant microbe interaction in sustainable agricultura. New Delhi, India: CCS Harynan Agricultural University, Hisar and MMB; 1995. p. 46–61.
34. Pal Saha S, Bhattacharyya S, Chakraborty H. Solubilization of tricalcium phosphate by P(3HB) accumulating Azotobacter chroococcum MAL-201. World Journal of Microbiology and Biotechnology 2013; 30(5): 1575–1582.
DOI: https://doi.org/10.24294/th.v3i1.1786
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This site is licensed under a Creative Commons Attribution 4.0 International License.