Intratetrad mating as the driving force behind the formation of sex chromosomes in fungi

Ilia A. Zakharov

Article ID: 2522
Vol 6, Issue 1, 2023

VIEWS - 217 (Abstract) 151 (PDF)

Abstract


In some fungi-ascomycetes and basidiomycetes, the 4 haploid spores formed as a result of meiosis can fuse in pairs, forming a dikaryon or diploid. The consequence of such intratetrad mating is the preservation of heterozygosity of genes linked to the mating-type (MAT) locus. If the MAT is linked to the centromere physically or genetically (as a result of the suppression of recombination), the centromere regions of all chromosomes are preserved in a heterozygous state. Suppression of recombination in the MAT chromosome contributes to the accumulation of lethal mutations and chromosomal rearrangements in it. Two MAT chromosomes cease to be homologous and become analogues of the sex chromosomes of animals and plants.


Keywords


intratetrad mating; sex chromosomes; Microbotryum sp; Neurospora tetrasperma; mating type (MAT) locus

Full Text:

PDF


References


1. Gallegos A, Jacobson DJ, Raju NB, et al. Suppressed recombination and a pairing anomaly on the mating-type chromosome of Neurospora tetrasperma. Genetics 2000; 154(2): 623–633. doi: 10.1093/genetics/154.2.623

2. Hood ME. Dimorphic mating-type chromosomes in the fungus Microbotryum violaceum. Genetics 2002; 160(2): 457–461. doi: 10.1093/genetics/160.2.457

3. Hood ME, Petit E, Giraud T. Extensive divergence between mating-type chromosomes of the anther-smut fungus. Genetics 2013; 193(1): 309–315. doi: 10.1534/genetics.112.146266

4. Foulongne-Oriol M, Taskent O, Kües U, et al. Mating-type locus organization and mating-type chromosome differentiation in the bipolar edible button mushroom Agaricus bisporus. Genes 2021; 12(7): 1079–1106. doi: 10.3390/genes12071079

5. Fraser JA, Heitman J. Evolution of fungal sex chromosome. Molecular Microbiology 2004; 51(2): 299–306. doi: 10.1046/j.1365-2958.2003.03874.x

6. Hartmann FE, Duhamel M, Carpentier F, et al. Recombination suppression and evolutionary strata around mating-type loci in fungi: Documenting patterns and understanding evolutionary and mechanistic causes. New Phytologist 2021; 229(5): 2470–2491. doi: 10.1111/nph.17039

7. Jay P, Tezenas E, Giraud T. A deleterious mutation-sheltering theory for the evolution of sex chromosomes and supergenes. BioRxiv preprint 2021; 1–31. doi: 10.1101/2021.05.17.444504

8. Idnurma A, Hood ME, Johannesson H, Giraud T. Contrasted patterns in mating-type chromosomes in fungi: Hotspots versus coldspots of recombination. Fungal Biology Reviews 2015; 29(3–4): 220–229. doi: 10.1016/j.fbr.2015.06.001

9. Badouin H, Hood ME, Gouzy J, et al. Chaos of rearrangements in the mating-type chromosomes of the anther-smut fungus Microbotryum lychnidis-dioicae. Genetics 2015; 200(4): 1275–1284. doi: 10.1534/genetics.115.177709

10. Carpentier F, Vega RCR, Branco S, et al. Convergent recombination cessation between mating-type genes and centromeres in selfing anther-smut fungi. Genome Research 2019; 29(6): 944–953. doi: 10.1101/gr.242578.118

11. Branco S, Carpentier F, Vega RCR, et al. Multiple convergent supergene evolution events in mating-type chromosomes. Nature Communication 2018; 9(1): 2000. doi: 10.1038/s41467-018-04380-9

12. Zakharov IA. Genetic consequences of the intratetrad fertilization of ascospores in yeasts. Vestnik Leningradskogo Universiteta Serija Biologii 1965; 9: 124–129.

13. Zakharov IA. Homozygosity in intratetrad and intraoctad fertilisation in fungi. Soviet Genetics 1968; 4: 636–642.

14. Kirby GC. Breeding systems and heterozygosity in populations of tetrad forming fungi. Heredity 1984; 52: 35–41.

15. Hood ME, Antonovics J. Intratetrad mating, heterozygosity, and the maintenance of deleterious alleles in Microbotryum violaceum (= Ustilago violacea). Heredity 2000; 85: 231–241. doi: 10.1046/j.1365-2540.2000.00748.x

16. Hood ME, Antonovics J. Mating within the meiotic tetrad and the maintenance of genomic heterozygosity. Genetics 2004; 166(4): 1751–1759. doi: 10.1093/genetics/166.4.1751

17. Zakharov IA. Some principles of the gene localization in eukaryotic chromosomes. Formulation of the problem and analysis of non-random localization of the mating-type loci in some fungi. Soviet Genetics 1986; 22: 1415–1419.

18. Zakharov IA. Intratetrad mating and its genetic and evolutionary consequences. Genetika 2005; 41(4): 508–519.

19. Johnson LJ, Antonovics J, Hood ME. The evolution of intratetrad mating rates. Evolution 2005; 59(12): 2525–2532.

20. Oudemans PV, Alexander HM, Antonovics J, et al. The distribution of mating-type bias in natural populations of the anther-smut Ustilago violacea on Silene alba in Virginia. Mycologia 1998; 90(3): 372–381. doi: 10.1080/00275514.1998.12026921




DOI: https://doi.org/10.24294/tge.v6i1.2522

Refbacks

  • There are currently no refbacks.


License URL: https://creativecommons.org/licenses/by-nc/4.0/

Creative Commons License

This site is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.