Phylogenetic and structure genetic of Rastrelliger sp in north Maluku Sea, Indonesia

Nebuchadnezzar Akbar, Eko S. Wibowo, Abdurrachman Baksir, M. Janib Achmad, Rustam E. Paembonan, Ikbal Marus, Irmalita Tahir, Najamuddin Najamuddin, Riyadi Subur, Firdaut Ismail, Abdul Ajiz Siolimbona, Aradea Bujana Kusuma, Iswandi Wahab, Edwin Jefri, Beginer Subhan, Nyoman M. N. Natih, Dondy Arafat, Dandi Saleky, Waluyo Waluyo

Article ID: 2350
Vol 6, Issue 1, 2023

VIEWS - 352 (Abstract) 140 (PDF)

Abstract


Mackerel is a small pelagic fish that has potential value and can be found throughout Indonesian waters. It is feared that high exploration activities will have an impact on the population. Sampling was carried out at the fish landing port and fish auction place (Bacan, Morotai and Ternate). The sample was photographed and the 3 cm swimming fin was taken. The sample is then stored in a tube that has been filled with 96% ethanol solution. The next stage is the process of extraction, amplification, electrophoresis and DNA sequencing. Phylogenetic reconstruction of comparison of primary data (Bacan, Morotai and Ternate) and secondary data (Indian) clarified to form two different populations (clades). Amova population pairwaise (Fst) showed the genetic flow of R. kanagurta population in the waters of the north Maluku Sea (Bacan, Morotai and Ternate). On the other hand, genetic distance shows that populations (Bacan, Morotai and Ternate) were closely related and have strong genetic connectivity.


Keywords


evolution; molecular; tropical fish; ancestry; ocean dynamics

Full Text:

PDF


References


1. Sarasati W. Population dynamics and multispecies reproductive biology of mackerel (Rastrelliger faughni, R. kanagurta R. brachysoma) in the waters of the Sunda Strait [Master’s thesis]. Bogor Agricultural Institute; 2017.

2. Permatachani, A, Boer M,Kamal MM. Fish stock assesment of fish resources common Ponyfish (Leiognathus equulus) caught rampus net in Sunda Strait. Jurnal Teknologi Perikanan dan Kelautan 2016;7(2): 107-116.

3. Ibrahim PS, Setyobudiandi I, Sulistiono. Relationship between long weight and condition factors for Selaroides

4. leptolepis yellow trevally in the Sunda Strait waters. Jurnal Ilmu Dan Teknologi Kelautan Tropis 2018; 9(2): 577–

5. doi: 10.29244/jitkt.v9i2.1929

6. Syahailatua A. Fish Stock Identification, The Princip and Its Significance. Oseana 1993; 18(2): 55–63.

7. Akbar N, Zamani NP, Madduppa HH. Genetic diversity of yellowfin tuna (Thunnus albacares) from two populations in the Moluccas Sea, Indonesia. Depik 2014; 3(1): 65–73.

8. Ubadillah R, Sutrisno H. Pengantar biosistematik : teori dan praktek. museum zoologicum bogoriense, pusat penelitian biologi. Lembaga Ilmu Pengetahuan Indonesia. Bogor. Lipi press; 2009.

9. Pertiwi ND. Identification of Coral Fish of the Pseudochromidae (Dottyback) Family in the Coral Triangle Region [Master’s Thesis]. Denpasar Udayana University; 2015.

10. Safitri A, Simarmata L, Hardani HW (editors). Lestari ABR (translator). Biologi. Jilid 1. Jakarta : Erlangga; 2002.

11. Nugraha B. Studi Tentang Genetika Populasi Ikan Tuna Mata Besar (Thunnus Obesus) Hasil Tangkapan Tuna Longline yang Didaratkan di Benoa [Master’s Thesis]. Pascasarjana Institut Pertanian Bogor; 2009.

12. Nugroho E, Subagja J, Asih S, et al. Evaluasi keragaman genetik ikan Kancra dengan menggunakan marker mt DNA D-loop dan Random Amplified Polymorphism DNA (RAPD). Jurnal Riset Akuakultur 2016; 1(2): 211–217. doi: 10.15578/jra.1.2.2006.211-217

13. Suwarso. Variasi Geografik dalam Struktur Genetik Populasi Ikan Kakap Merah, Lutjanus malabaricus, (Lutjanidae) dan Interaksi Lingkungan di Laut Jawa [Master’s Thesis]. Program Pascasarjana, Institut Pertanian Bogor; 2020.

14. Permana GN, Hutapea JH, Haryanti, Sembiring SBM. Variasi genetik ikan tuna sirip kuning (Thunnus albaceras) dengan analisis elektroforesis allozyme dan mtDNA. Jurnal Riset Akuakultur 2007; 2(1): 41–50. doi: 10.15578/jra.2.1.2007.41-50

15. Wijana IMS, Mahardika IGN. Struktur Genetik dan Filogeni Yellowfin Tuna (Thunnus albacares) berdasarkan Sekuen DNA Mitkondria control region sitokrom oksidase I pada diversitas zone biogeografi. Jurnal Bumi Lestari 2010; 10(2): 270–274.

16. Susanto AH, Suryaningsih S. Variasi biokimia genetik ikan betutu (Oxyeleotris marmorata. BLKR) di waduk penjalin Brebes. Jurnal Biota 2006; 11(3): 136–141.

17. Suman A, Irianto HE, Amri K. Population structure and reproduction of bigeye tuna (Thunnus obesus) in Indian Ocean at western part of Sumatera and southern part of Java and Nusa Tenggara. Indian Ocean Tuna Commission 2013; 8: 1–14.

18. Akbar N, Pertiwi D, Neviaty PZNP, et al. A pilot study on the population genetics of yellowfin tuna (Thunnus albacares) from two populations in the Moluccas Islands, Indonesia. Depik 2020; 9(1): 69–106. doi: 10.13170/depik.9.1.10585

19. Jefri E, Zamani N P, Subhan B, Madduppa HH. Molecular phylogeny inferred from mitochondrial DNA of the grouper Epinephelus spp. in Indonesia collected from local fish market. Biodiversitas Journal of Biological Diversity 2015; 16(2). doi: 10.13057/biodiv/d160221

20. Kartika GRA, Sartimbul A, Widodo W. Genetic Variance OF Sardinela lemuru in the Bali Strait Waters. Jurnal Kelautan 2017; 10(1). doi: 10.21107/jk.v10i1.1615

21. Aris M, Akbar N, Labenua R. Genetic and phylogenetic variations of yellowfin tuna (thunnus albacares) as a basis for sustainable fishery resources management in north moluccas. International Journal of Pharma and Bio Sciences 2017; 8(4): 419-426. http://dx.doi.org/10.22376/ijpbs.2017.8.4.b419-426

22. Zamroni A, Suwarso S, Kuswoyo A. Genetic Variation of Indian Mackerel, Rastrelliger kanagurta (Cuvier, 1817) in the Waters of Eastern Indonesia. Bawal 2017; 9(2): 123–131.

23. Salma U, Madduppa H. Morphometric and genetic identification of Mackerel (Rastrelliger sp.) collected from muara baru fish market, jakarta. Jurnal Ilmu Kelautan Kepulauan 2021; 4(2). doi: 10.33387/jikk.v4i2.3880

24. Akbar N, Wibowo ES, Irfan M, et al. DNA barcoding and morphometric of Rastrelliger spp. in North Maluku Sea, Indonesia. Aceh Journal of Animal Science 2022; 7(3): 73–81. doi: 10.13170/ajas.7.3.26530

25. Walsh PS, Metzger DA, Higuchi R. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 1991; 10(4): 506–513.

26. Barber PH, Erdmann MV, Palumbi SR. Comparative phylogeography of three codistributed stomatopods: origins and timing of regional lineage diversification in the coral triangle. Evolution 2006; 60(9): 1825–1839. doi: 10.1111/j.0014-3820.2006.tb00526.x

27. Tamura K, Peterson D, Peterson N, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 2011; 28(10): 2731–2739. doi: 10.1093/molbev/msr121

28. Excoffier L, Lischer H. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 2010; 10(3):564–567. doi: https://doi.org/10.1

29. /j.1755-0998.2010.02847.x

30. Indaryanto FR, Imai H, Yusli Wardiatno Y. Genetic variation of short body mackerel, Rastrelliger brachysoma of Jawa Island, Indonesia based on mtDNA control region sequences. Bioflux 2015; 8(5): 648-655

31. Torquato F, Range P, Ben‐Hamadou R, et al. Consequences of marine barriers for genetic diversity of the coral‐specialist yellowbar angelfish from the Northwestern Indian Ocean. Ecology and Evolution 2019; 9(19): 11215–11226. doi: 10.1002/ece3.5622

32. Akib NAM, Tam BM, Phumee P, Abidin MZ, Tamadoni S, Mather PB, Nor SAM. High Connectivity in Rastrelliger kanagurta: Influence of Historical Signatures and Migratory Behaviour Inferred from mtDNA Cytochrome b. PLoS ONE 2015; 10(3): e0119749. https://doi.org/10.1371/journal.pone.0119749

33. Jackson AM, Ambariyanto, Erdmann MV, Toha AHA, Steven LA, Barber. Phylogeography of commercial tuna and mackerel in the Indonesian Archipelago. Bulletin of Marine Science 2014; 90(1):471–492. http://dx.doi.org/10.5343/bms.2012.1097

34. Achmad MJ, Djamhur M, Fabanyo M, Akbar N. DNA barcoding application of garfish (Hemirhampus sp.) in North Maluku Sea. Jurnal Iktiologi Indonesia 2019; 19(3): 463-473 DOI: ttps://doi.org/10.32491/jii.v19i3.506

35. Lee PLM, Dawson MN, Neill SP, et al. Identification of genetically and oceanographically distinct blooms of jellyfish. Journal of the Royal Society Interface 2013, 10(80). doi: 10.1098/rsif.2012.0920

36. Zamroni A, Suwarso, Mukhlis NA, Reproductive biology and genetic population of short mackerel (Rastrelliger brachysoma, Scombridae) in the coastal waters of northern Jawa. Indonesian Fisheries Research Journal 2007; 14(2):215–226

37. Munpholsri N, Poompuang S, Senanan W, Kamonrat W.Microsatellite markers suggested moderate genetic variation in Indian mackerel (Rastrelliger kanagurta) populations from the Andaman Sea, Thailand. Kasetsart Journal (Natural Science) 2013; 47:853–863

38. Kusuma BA, Bengen DG, Madduppa H, Subhan B, Arafat D, Negara BFSP. Close genetic connectivity of soft coral Sarcophyton trocheliophorum in Indonesia and its implication for marine protected area. Aceh Journal of Animal Science 2016; 1(2): 50-57. https://doi.org/10.13170/ajas.1.2.4867

39. Grant WS. Biochemical genetic stock structure of the southern African anchovy, Engraulis capensis Gilchrist. Journal of Fish Biology 1985; 27(1): 23–29. doi: 10.1111/j.1095-8649.1985.tb04006.x

40. White C, Selkoe KA, Watson J, et al. Ocean currents help explain population genetic structure. Proceedings of the Royal Society B: Biological Sciences 2010; 277(1688): 1685–1694. doi: 10.1098/rspb.2009.2214

41. Finnerty JR, Block BA. Direct sequencing of mitochondrial DNA detects highly divergent haplotypes in blue marlin (Makaira nigricans). Molecular Marine Biology and Biotechnology 1992; 1(3): 206–214.

42. Chow S, Ushiama H. Global population structure of albacore (Thunnus alalunga) inferred by RFLP analysis of the mitochondrial ATPase gene. Marine Biology 1995; 123: 39–45. doi: 10.1007/BF00350321

43. Menezes MR, Kumar G, Kunal SP. Population genetic structure of skipjack tuna Katsuwonus pelamis from the Indian coast using sequence analysis of the mitochondrial DNA D‐loop region. Journal of Fish Biology 2012; 80(6): 2198–2212. doi: 10.1111/j.1095-8649.2012.03270.x

44. Teske PR, Papadopoulos I, Newman BK, et al. Oceanic dispersal barriers, adaptation and larval retention: an interdisciplinary assessment of potential factors maintaining a phylogeographic break between sister lineages of an African prawn. BMC Evolutionary Biology 2008; 8(1): 1–14. doi: 10.1186/1471-2148-8-341

45. O’Reilly PT, Canino MF, Bailey KM, Bentzen P. Inverse relationship between FST and microsatellite polymorphism in the marine fish, walleye pollock (Theragra chalcogramma): implications for resolving weak population structure. Molecular Ecology 2004; 13(7): 1799–1814. doi: 10.1111/j.1365-294X.2004.02214.x




DOI: https://doi.org/10.24294/tge.v6i1.2350

Refbacks

  • There are currently no refbacks.


License URL: https://creativecommons.org/licenses/by-nc/4.0/

Creative Commons License

This site is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.