Effects of feedstock pretreatment and binder selection on briquette characterization

Raphael Segun Bello, Abel Olajide Olorunnisola, Temidayo Emmanuel Omoniyi, Musiliu Ademuiwa Onilude

Article ID: 5292
Vol 7, Issue 1, 2024

VIEWS - 56 (Abstract) 15 (PDF)

Abstract


Briquettes from raw biomass exhibit smokiness and emits irritant gases. Technical solutions were found in feedstock pretreatment and appropriate binder selection, which this study investigated. Torrefaction and fermentation pretreatments and used printing paper (UPP), newsprint (Np), and clay (C) were selected for experimentation. Samples of Gmelina arborea sawdust (GaS) collected from sawmills were characterized using the ASTM standards. Hollow briquettes were produced at 10:90%, 20:80%, 30:70%, 40:60%, and 50:50% feedstock/binder mixes. Data were analyzed using descriptive statistics and ANOVA at α0.05. Results showed that torrefaction yield increased with torrefaction time, particle density increased with fermentation time but decreased with torrefaction time. Proximate values significantly differ for torrefied and fermented GaS, while heating value (HHV) increased with residence for torrefied and fermented briquettes. Torrefied UPP briquettes produced non-luminous flame and less smoke. Clay briquettes, however, had charred combustion. Fuel consumption increased with binder concentration but decreased with an increase in residence time.


Keywords


pretreatment; Gmelina arborea sawdust; torrefaction; briquettes; characterization; binder

Full Text:

PDF


References


1. Kumar A, Kumar N, Baredar P, et al. A review on biomass energy resources, potential, conversion and policy in India. Renewable and Sustainable Energy Reviews. 2015; 45: 530-539. doi: 10.1016/j.rser.2015.02.007

2. Kim J, Abdel-Hameed A, Joseph SR, et al. Modeling Long-Term Electricity Generation Planning to Reduce Carbon Dioxide Emissions in Nigeria. Energies. 2021; 14(19): 6258. doi: 10.3390/en14196258

3. Matali S, Rahman NA, Idris SS, et al. Lignocellulosic Biomass Solid Fuel Properties Enhancement via Torrefaction. Procedia Engineering. 2016; 148: 671-678. doi: 10.1016/j.proeng.2016.06.550

4. Nhuchhen DR. Studies on advanced means of biomass torrefaction. Available online: http://hdl.handle.net/10222/71402 (accessed on 8 March 2023).

5. Wilaipon P. The Effects of Briquetting Pressure on Banana-Peel Briquette and the Banana Waste in Northern Thailand. American Journal of Applied Sciences. 2009; 6(1): 167-171. doi: 10.3844/ajas.2009.167.171

6. Oyedemi TI. Characterization of fuel briquettes from Gmelina arborea (Robx.) sawdust and maize cob particles using Cissus populnea gum as binder. Available online: http://ir.library.ui.edu.ng/handle/123456789/682 (accessed on 8 March 2023).

7. Kumar SR, Sarkar A, Chakraborty JP. Effect of torrefaction on the physicochemical properties of pigeon pea stalk (Cajanus Cajan) and estimation of kinetic parameters. Renewable Energy. 2019; 138: 805-819. doi: 10.1016/j.renene.2019.02.022

8. Adnan MA, Mohd Fuad MAH, Hasan MF. Oxidative torrefaction for pulverized palm biomass using air. Jurnal Teknologi. 2017; 79(7-4). doi: 10.11113/jt.v79.12259

9. Basu P. Biomass gasification, pyrolysis and torrefaction: Practical design and theory. Academic Press; 2018. doi: 10.1016/C2016-0-04056-1

10. Zanzi R, Ferro DT, Torres A, et al. Biomass torrefaction. In: Proceedings of the 6th Asia-Pacific International Symposium on Combustion and Energy Utilization; 20-22 May 2002; Kuala Lumpur.

11. Tchapda A, Pisupati S. A Review of Thermal Co-Conversion of Coal and Biomass/Waste. Energies. 2014; 7(3): 1098-1148. doi: 10.3390/en7031098

12. Chen WH, Peng J, Bi XT. A state-of-the-art review of biomass torrefaction, densification and applications. Renewable and Sustainable Energy Reviews. 2015; 44: 847-866. doi: 10.1016/j.rser.2014.12.039

13. Adapa PK, Tabil LG, Schoenau GJ. Compression characteristics of selected ground agricultural biomass. Agricultural Engineering International: the CIGR Ejournal. Manuscript. 2009; 6: 1347.

14. Shi S, Yue C, Wang L, et al. A Bibliometric Analysis of Anaerobic Digestion for Butanol Production Research Trends. Procedia Environmental Sciences. 2012; 16: 152-158. doi: 10.1016/j.proenv.2012.10.021

15. Karunanithy C, Wang Y, Muthukumarappan K, et al. Physiochemical Characterization of Briquettes Made from Different Feedstocks. Biotechnology Research International. 2012; 2012: 1-12. doi: 10.1155/2012/165202

16. Iroba KL, Baik OD, Tabil LG. Torrefaction of biomass from municipal solid waste fractions II: Grindability characteristics, higher heating value, pelletability and moisture adsorption. Biomass and Bioenergy. 2017; 106: 8-20. doi: 10.1016/j.biombioe.2017.08.008

17. ASTM International. ASTM D7481-09, Standard test methods for determining loose and tapped bulk densities of powders using a graduated cylinder. ASTM International; 2018.

18. Adeleke AA, Odusote JK, Paswan D, et al. Influence of torrefaction on lignocellulosic woody biomass of Nigerian origin. Journal of Chemical Technology and Metallurgy. 2019; 54: 274-285.

19. Odusote JK, Adeleke AA, Lasode OA, et al. Thermal and compositional properties of treated Tectona grandis. Biomass Conversion and Biorefinery. 2019; 9(3): 511-519. doi: 10.1007/s13399-019-00398-1

20. Jayeola AA, Aworinde DO, Folorunso AE. Use of Wood Characters in the Identification of Selected Timber Species in Nigeria. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 2009; 37(2): 28-32.

21. Olusegun-Awosika BM, Adegunloye DV. Potential of Brachystegia Nigeria sawdust as fermentation medium for biobutanol production: A preliminary study. Journal of Energy Technologies and Policy. 2020; 10(7). doi: 10.7176/JETP/10-7-02

22. Bello RS, Olorunnisola AO, Omoniyi TE, Onilude MA. Development of a Multiple-Piston Hydraulic Briquetting Press HBP and Characterization of Newsprint Briquettes Produced. Trends in Agricultural Sciences. 2023; 2(2): 169-188. doi: 10.17311/tas.2023.169.188

23. Nhuchhen D, Afzal M. HHV Predicting Correlations for Torrefied Biomass Using Proximate and Ultimate Analyses. Bioengineering. 2017; 4(4): 7. doi: 10.3390/bioengineering4010007

24. Parikh J, Channiwala SA, Ghosal GK. A correlation for calculating elemental composition from proximate analysis of biomass materials. Fuel. 2007; 86(12-13): 1710-1719. doi: 10.1016/j.fuel.2006.12.029

25. Mitchual SJ, Frimpong-Mensah K, Darkwa NA. Effect of species, particle size and compacting pressure on relaxed density and compressive strength of fuel briquettes. International Journal of Energy and Environmental Engineering. 2013; 4(1): 30. doi: 10.1186/2251-6832-4-30

26. Sundqvist B. Colour changes and acid formation in wood during heating. Available online: https://www.diva-portal.org/smash/get/diva2:999349/FULLTEXT01.pdf (accessed on 8 March 2023).

27. Simonyan KJ, Fasina O. Biomass resources and bioenergy potentials in Nigeria. African Journal of Agricultural Research. 2013; 4975-4989.

28. Bello RS, Olorunnisola AO, Omoniyi TE. Effects of binder concentrations and soaking time on combustion characteristics of briquettes produced from fermented Gmelina Arborea (Roxb) Sawdust and Used Print Paper. Bioenergy Studies. 2022; 2: 031-042. doi: 10.51606/bes.2022.9

29. Udeagbara SG, Ogiriki SO, Afolabi F, Bodunde EJ. Evaluation of the effectiveness of local clay from Ebonyi state, Nigeria as a substitute for Bentonite in drilling fluids. International Journal of Petroleum and Gas Engineering Research. 2019; 3(1): 1-10.

30. Kathuria RS. Using Agricultural Residues as a Biomass Briquetting: An Alternative Source of Energy. IOSR Journal of Electrical and Electronics Engineering. 2012; 1(5): 11-15. doi: 10.9790/1676-0151115

31. Borowski G. Possibilities of utilization of energy briquettes. Electrical Engineering Research Report. 2011; 1(27): 48-51.

32. Ajimotokan HA, Ehindero AO, Ajao KS, et al. Combustion characteristics of fuel briquettes made from charcoal particles and sawdust agglomerates. Scientific African. 2019; 6: e00202. doi: 10.1016/j.sciaf.2019.e00202

33. Balogun AO, Lasode OA, McDonald AG. Devolatilisation kinetics and pyrolytic analyses of Tectona grandis (teak). Bioresource Technology. 2014; 156: 57-62. doi: 10.1016/j.biortech.2014.01.016

34. Fajobi MO, Lasode OA, Adeleke AA, et al. Investigation of physicochemical characteristics of selected lignocellulose biomass. Scientific Reports. 2022; 12(1): 1-4. doi: 10.1038%2Fs41598-022-07061-2

35. Bello RS, Olorunnisola AO, Omoniyi TE, Onilude MA. Combustion Characteristics of Briquettes Produced from Three Binders and Torrefied Gmelina arborea (Robx.) Sawdust. Trends in Applied Sciences Research. 2023; 18(1): 71-93. doi: 10.17311/tasr.2023.71.93

36. Aboagye B, Gyamfi S, Ofosu EA, et al. Status of renewable energy resources for electricity supply in Ghana. Scientific African. 2021; 11: e00660. doi: 10.1016/j.sciaf.2020.e00660

37. Olorunnisola AO. The development and performance evaluation of a briquette burning stove. Nigerian Journal of Renewable Energy. 1999; 7(1-2): 91-95.

38. Sotannde OA, Oluyege AO, Abah GB. Physical and combustion properties of briquettes from sawdust of Azadirachta indica. Journal of Forestry Research. 2010; 21(1): 63-67. doi: 10.1007/s11676-010-0010-6

39. Olorunnisola AO. The efficiency of two Nigerian cooking stoves in handling maize cob briquettes. Nigerian Journal of Renewable Energy. 1993; 7(1-2): 31-34.

40. Olugbade T, Ojo O, Mohammed T. Influence of Binders on Combustion Properties of Biomass Briquettes: A Recent Review. BioEnergy Research. 2019; 12(2): 241-259. doi: 10.1007/s12155-019-09973-w

41. Nikiema J, Asamoah B, Egblewogbe MNYH, et al. Impact of material composition and food waste decomposition on characteristics of fuel briquettes. Resources, Conservation & Recycling Advances. 2022; 15: 200095. doi: 10.1016/j.rcradv.2022.200095




DOI: https://doi.org/10.24294/nrcr.v7i1.5292

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Raphael Segun Bello, Abel Olajide Olorunnisola, Temidayo Emmanuel Omoniyi, Musiliu Ademuiwa Onilude

License URL: https://creativecommons.org/licenses/by/4.0/

This site is licensed under a Creative Commons Attribution 4.0 International License.