Waste water treatment through microalgae and cyanobacteria

Ritu Singh Rajput, Anuj Kumar

Article ID: 4925
Vol 7, Issue 1, 2024

VIEWS - 46 (Abstract) 26 (PDF)

Abstract


Resource recovery systems for microalgae and cyanobacteria could substantially advance the recovery of nutrients from waste water by reaching the rate of effluent nitrogen (N) and phosphorus (P) below the current technology limits. However, the efficient introduction of phytoplankton involves the creation of process models that retain efficiency and simplicity in order to effectively replicate complex performance in response to environmental conditions. This research synthesises the variety of model structures that have gained from the modelling of algae and cyanobacteria and the key model features needed to allow reliable process modelling in water resource recovery facilities. Processes of cyanobacteria, including comprehensive growth prediction guidelines (under phototrophic, heterotrophic and mixotrophic conditions), nutrient absorption, carbon absorption and accumulation, and respiration are provided.


Keywords


microalgae; cyanobacteria; wastewater; biosorption; heavy metal

Full Text:

PDF


References


1. Khan Z, Bhadouria P, Bisen P. Nutritional and Therapeutic Potential of Spirulina. Current Pharmaceutical Biotechnology. 2005; 6(5): 373-379. doi: 10.2174/138920105774370607

2. Becker EW. Micro-algae as a source of protein. Biotechnology Advances. 2007; 25(2): 207-210. doi: 10.1016/j.biotechadv.2006.11.002

3. Grima EM, Belarbi EH, Fernández FA, et al. Recovery of microalgal biomass and metabolites: process options and economics. Biotechnology advances. 2003; 20(7-8): 491-515. doi: 10.1016/S0734-9750(02)00050-2

4. Spolaore P, Joannis-Cassan C, Duran E, et al. Commercial applications of microalgae. Journal of Bioscience and Bioengineering. 2006; 101(2): 87-96. doi: 10.1263/jbb.101.87

5. Thakur A, Kumar HD. Nitrate, Ammonium, and Phosphate Uptake by the Immobilized Cells of Dunaliella salina. Bulletin of Environmental Contamination and Toxicology. 1999; 62(1): 70-78. doi: 10.1007/s001289900843

6. Wen ZY, Chen F. Heterotrophic production of eicosapentaenoic acid by microalgae. Biotechnology advances. 2003; 21(4): 273-294. doi: 10.1016/S0734-9750(03)00051-X

7. Guerin M, Huntley ME, Olaizola M. Haematococcus astaxanthin: applications for human health and nutrition. TRENDS in Biotechnology. 2003; 21(5): 210-216. doi: 10.1016/S0167-7799(03)00078-7

8. Pulz O, Gross W. Valuable products from biotechnology of microalgae. Applied Microbiology and Biotechnology. 2004; 65(6): 635-648. doi: 10.1007/s00253-004-1647-x

9. El-Bestawy E. Treatment of mixed domestic–industrial wastewater using cyanobacteria. Journal of Industrial Microbiology & Biotechnology. 2008; 35(11): 1503-1516. doi: 10.1007/s10295-008-0452-4

10. El-Masry MH, El-Bestawy E, Nawal I. Bioremediation of vegetable oil and grease from polluted wastewater using a sand biofilm system. World Journal of Microbiology and Biotechnology. 2004; 20(6): 551-557. doi: 10.1023/B:WIBI.0000043162.17813.17

11. El-Bestawy EA, El-Salam AZA, Mansy AERH. Potential use of environmental cyanobacterial species in bioremediation of lindane-contaminated effluents. International Biodeterioration & Biodegradation. 2007; 59(3): 180-192. doi: 10.1016/j.ibiod.2006.12.005

12. de la Noüe J, Laliberté G, Proulx D. Algae and waste water. Journal of Applied Phycology. 1992; 4(3): 247-254. doi: 10.1007/bf02161210

13. Cañizares RO, Rivas L, Montes C, et al. Aerated swine-wastewater treatment with K-carrageenan-immobilized Spirulina maxima. Bioresource technology. 1994; 47(1): 89-91. doi: 10.1016/0960-8524(94)90035-3

14. Lavoie A, De la Noüe J. Hyperconcentrated cultures of Scenedesmus obliquus: a new approach for wastewater biological tertiary treatment? Water research. 1985; 19(11): 1437-1442. doi: 10.1016/0043-1354(85)90311-2

15. de la Noüe J, Proulx D. Biological tertiary treatment of urban wastewaters with chitosan-immobilizedPhormidium. Applied Microbiology and Biotechnology. 1988; 29(2-3): 292-297. doi: 10.1007/bf00939324

16. Borowitzka MA, Borowitzka LJ. Micro-algal biotechnology. Cambridge University Press; 1988.

17. González LE, Cañizares RO, Baena S. Efficiency of ammonia and phosphorus removal from a Colombian agroindustrial wastewater by the microalgae Chlorella vulgaris and Scenedesmus dimorphus. Bioresource technology. 1997; 60(3): 259-262. doi: 10.1016/S0960-8524(97)00029-1

18. Singh NK, Dhar DW. Sewage effluent: a potential nutrient source for microalgae. Proceedings-Indian National Science Academy. 2006; 72(2): 113.

19. Fallowfield HJ, Garrett MK. The photosynthetic treatment of pig slurry in temperate climatic conditions: a pilot-plant study. Agricultural wastes. 1985; 12(2): 111-136. doi: 10.1016/0141-4607(85)90003-4

20. Hameed MA. Effect of algal density in bead, bead size and bead concentrations on wastewater nutrient removal. African Journal of biotechnology. 2007; 6(10).

21. Rai LC, Gaur JP, Soeder CJ. Algae and water pollution. Algae. 1994; 99: 123.

22. Chevalier P, de la Noüe J. Wastewater nutrient removal with microalgae immobilized in carrageenan. Enzyme and microbial technology. 1985; 7(12): 621-624. doi: 10.1016/0141-0229(85)90032-8

23. Mallick N, Rai LC. Influence of culture density, pH, organic acids and divalent cations on the removal of nutrients and metals by immobilized Anabaena doliolum and Chlorella vulgaris. World Journal of Microbiology and Biotechnology. 1993; 9(2): 196-201. doi: 10.1007/bf00327836

24. Abdel Hameed MS. Effect of Immobilization on growth and photosynthesis of the green alga Chlorella vulgaris and its efficiency in heavy metals removal. Bull Fac Sci Assiut Univ. 2002; 31(1-D): 233-240.

25. Talbot P, Thébault JM, Dauta A, De la Noüe J. A comparative study and mathematical modeling of temperature, light and growth of three microalgae potentially useful for wastewater treatment. Water research. 1991; 25(4): 465-472. doi: 10.1016/0043-1354(91)90083-3

26. Vonshak A, Chanawongse L, Bunnag B, et al. Light acclimation and photoinhibition in threeSpirulina platensis (cyanobacteria) isolates. Journal of Applied Phycology. 1996; 8(1): 35-40. doi: 10.1007/bf02186220

27. de-Bashan LE, Hernandez JP, Morey T, et al. Microalgae growth-promoting bacteria as “helpers” for microalgae: a novel approach for removing ammonium and phosphorus from municipal wastewater. Water Research. 2004; 38(2): 466-474. doi: 10.1016/j.watres.2003.09.022

28. de-Bashan LE, Trejo A, Huss VAR, et al. Chlorella sorokiniana UTEX 2805, a heat and intense, sunlight-tolerant microalga with potential for removing ammonium from wastewater. Bioresource Technology. 2008; 99(11): 4980-4989. doi: 10.1016/j.biortech.2007.09.065

29. Maxwell DP, Falk S, Trick CG, et al. Growth at Low Temperature Mimics High-Light Acclimation in Chlorella vulgaris. Plant Physiology. 1994; 105(2): 535-543. doi: 10.1104/pp.105.2.535




DOI: https://doi.org/10.24294/nrcr.v7i1.4925

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Ritu Singh Rajput, Anuj Kumar

License URL: https://creativecommons.org/licenses/by/4.0/

This site is licensed under a Creative Commons Attribution 4.0 International License.