Influence of contemporary warming on landscape-zonal systems of the East-European sub-continent: Predictive empirical-statistical modeling
Vol 6, Issue 1, 2023
VIEWS - 166 (Abstract) 184 (PDF)
Abstract
Presented in the given article regional geo-ecological prognoses are based on the construction of discrete empirical-statistical models of zonal and regional ecosystems. The analysis was carried out on the examples of the flat territories of the Volga River basin, as well as the northern macro-slope of the Main Caucasian ridge. Regional landscape-ecological calculations and mapping were carried out according to the global climatic models GISS-1988 and E GISS-2007 belonging to the family of models of general atmospheric circulation. The strategy of geo-ecological prognosis was as follows: first to identify the selected ecosystem objects (either zonal type of plant formations and regional kinds of landscape) to certain values of contemporary climatic conditions and then to estimate the most probable transformation of the revealed ecological niches of the given objects according to the expected climatic changes for the given prognostic date. The geo-ecological analysis has been performed using mainly two types of empirical models: (a) informational, describing the geo-component interrelations, serving as a basis for the regional bank of their ecological niches that characterizes their parametric space; (b) “fuzzy” set-theoretical models, describing the polysystem units of landscape-zonal organization by operations with the ecological niches as descriptive vectors. Predictions of ecosystem transformations include two stages of analysis: (1) evaluation of the probabilities of changes in the functional states of ecosystems and (2) calculations of the rates of ecosystem transformations. Quantitative predictive analysis is carried out by means of operations with the hydro-thermal niches of zonal-regional ecosystems. The ecological estimates of forthcoming global warming refer first of all to the functional but not structural-morphological prediction. The most probable directions and degree of conversion of the ecosystem are estimated by the maximum values of transformation. The algorithms of predictive calculations are described in detail for both stages of analysis. The results of the zonal-regional prognostic analysis are presented in both graphic-analytical models and small-scale maps.
Keywords
Full Text:
PDFReferences
1. Kotlyakov VM. Izbrannye sochineniya. Kniga 3. Geographiya v menyayushchemsya mire (Russian) [Selected works. Book 3. Geography in a changing world]. Moscow: Nauka; 2001.
2. Gerasimov IP. Ecologicheskie problem v proshloy, nastoyashchey i budushchey geographii Mira (Russian) [Environmental problems in the past, present and future geography of the world]. Moscow: Nauka; 1985.
3. Sochava VB. Vvdegenie v uchenie o geosistemah (Russian) [Introduction into the theory of geosystems]. Novosibirsk: Nauka; 1978.
4. Velichko AA, Borisova OK, Zelikson EM. Rastitelynosty v menyayushchemsya klimate (Russian) [Vegetation in a changing climate]. Bulletin of the Academy of Sciences of the USSR 1991; 3: 82–94.
5. Leemans R. Modelling ecological and agricultural impacts of global change on a global scale. Journal of Science & Industrial Research 1992; 51: 709–724.
6. Kobak KI, Kondrasheva NYu, Turchinovich IE. Vliyanie izmeneny klimata na prirodnuyu zonal’nost’ I rkosistemy Rossii (Russian) [Impact of climate change on natural zonality and Russian ecosystems]. In: Izrael YuA (editor). Climate changes and their consequence. St-Petersburg: Nauka; 2002. p. 205–210.
7. Kolomyts EG. Regional’naya model’ global’nyh izmeneny prirodnoy sredy (Russian) [Regional model of global environmental changes]. Moscow: Nauka; 2003.
8. Rozenberg GS. Modeli v phytotsenologii (Russian) [Models in Phytocoenology]. Moscow: Nauka; 1984.
9. Kolomyts EG. Boreal’my ekoton i geographicheskaya zonal’nost’. Atlas-Monographiya (Russian) [Boreal ecotone and geographic zonality: Atlas-monograph]. Moscow: Nauka; 2005.
10. Houghton LG, Meira Filho LG, Callander BA, et al. (editors). Climate change 1995. The science of climatic change. Cambridge, UK: Cambridge University Press; 1996.
11. Smith TM, Leemance R, Shugart HH. Sensitivity of terrestrial carbon storage to CO2-induced climate change: Comparison of four scenarios based on general circulation models. Climatic Change 1992; 21: 367–384.
12. Komarov A, Chertov O, Zudin S, et al. EFIMOD 2—System of simulation models of forest growth and elements cycles in forest ecosystems. Ecological Modeling 2003; 170: 373–392.
13. Krambein WC, Graybill FA. An introduction to statistical models in geology. 1st ed. New York: McGram-Hill Book Company; 1965.
14. Kolomyts EG, Rosenberg GS, Sharaya LS. Metody landshaftnoy ecologii v prognoznyh otsenkah bioticheskoy regolyatsii uglerodnogo tsikla pri global’nom poteplenii (Russian) [Landscape ecology methods in predictive estimates of the biotic regulation of the carbon cycle during global warming]. Russian Journal of Ecology 2009; 6: 1–8.
15. Turner MG, Gardner RH (editors). Quantitative methods in landscape ecology. The analysis and interpretation of landscape heterogeneity. New York, Berlin, Heidelberg: Springer-Verlag; 1990.
16. Saushkin YuG. Geographicheskaya nauka v proshlom, nastouashchem i budushchem (Russian) [Geographical science in the past, present and future]. Moscow: Prosveshchenie; 1980.
17. Simonov YuG. Osnovnye svoystva ob’ektov geographicheskogo prognozirovaniya i sposoby ih formalizovannogo opisaniya (Russian) [Basic properties of objects of geographical forecasting and methods of their formalized description]. In: Kapitsa AP, Simonov YuG (editors). Problemy regionalynogo geograficheskogo prognoza. Moscow: Nauka; 1982. p. 112–193.
18. Shvidenko AZ. Global’nye izmdeneniya I rossiyskaya lesnaya taksatsiya (Russian) [Global changes and Russian forest inventory]. Forest Inventory and Forest Management 2012; 47 (1): 52–75.
19. Rozenberg GS, Mozgovoy DP, Gelashvili DB. Ekologiya. Elementy teoreticheskih konstruktsy sovremennoy ekologii (Russian) [Ecology. Elements of theoretical constructs in modern ecology]. Samara: Samarsky Nauchny Tsentr RAN; 1999.
20. Odum EuP. Fundamentals of ecology. 3rd ed. Philadelphia, London, Toromto: W.B. Saunders Company; 1971.
21. Sukachev VN. Izbrannye trudy. Tom 1. Osnovy lesnoy tipologii i biogeostenologii (Russian) [Selected works. Vol. 1. Basics of forest typology and biogeocoenology]. Leningrad: Nauka; 1972.
22. Bazilevich NI, Grebenshchikov OS, Tishkov AA. Geographicheskie zakonomernosti struktury i funktsionirivaniya ekosistem (Russian) [Geographic patterns of the structure and functioning of ecosystems]. Moscow: Nauka; 1986.
23. Armand AD, Targul’an VO. Nekorye printsipial’nye ogranocheniy experimenta i modelirovaniya v geographii (Russian) [Some fundamental limitations of experiment and modeling in geography]. Izvestiya RAN (Akad. Nauk SSSR). Seriya Geograficheskaya 1974; 4: 129–138.
24. Kolomyts EG. Lokal’nye mechanizmy global’nyh izmeneny prirodnyh ekosistem (Russian) [Local mechanisms of global changes in natural ecosystems]. Moscow: Nauka; 2008.
25. Albritton DL, Barker T, Bashmakov I, et al. Changing of the climate. 2001. In: Whotson RT (editor). Synthesis report MGEIK. Geneva: World Meteorogical Organization; 2003.
26. Dokuchaev VV. Uchenie o prirodnyh zonah. Gorizontal’nae b vertikal’nye pochvennye zony (Russian) [To the doctrine of natural zones. Horizontal and vertical soil zones]. St.-Petersburg: Printing House of St.-Petersburg City Administration; 1899.
27. Berg LS. Gtographicheskie zony Sovetskogo Soyuza (Russian) [Geographic zones of the Soviet Union]. Moscow: Geographgiz; 1947.
28. Grigor’ev AA. Zakonomernosty stroeniya I razvitiya geographicheskoy sredy (Russian) [Regularities of the structure and development of the geographic environment]. Moscow: Mysl’; 1966.
29. Budyko MI. Global’naya ekologiya (Russian) [Global ekology]. Moscow: Mysl’; 1977.
30. Mil’kov PhN. Phizicheskaya geographiya: Uchenie o landshafte i geographicheskaya zonasl’nost’ (Russian) [Physical geography: The doctrine of the landscape and the geographic zonality]. Voronezh: Voronezh Publishing House University; 1986.
31. Gribova SA, Isachenko TI, Lavrenko EM. Rastitel’nost’ Evropeyskoy chasti SSSR (Russian) [Vegetation of the European part of the USSR]. Leningrad: Nauka; 1980.
32. Kӧppen V. Osnovy klimatologii (Klimaty Zemnogo Shara) (Russian) [Fundamentals of climatology (climates of the globe)]. Moscow: Uchpedgiz; 1938.
33. Vysotsky GN. Izbrannye Trudy (Russian) [Selected works]. Moscow: Selkhozgiz; 1960.
34. Armand DL. Nauka o landshafte (Russian) [Science about landscape]. Moscow: Mysl’; 1975.
35. Isachenko AG. Landshafty SSSR (Russian) [Landscapes of the USSR]. Leningrad: Publishing House of Leningrad State University; 1985.
36. Timofeev-Resovsky NV, Tyuryukanov AN. Ob elementarnyh biohorologicheskih podrazdeleniyah biosphery (Russian) [On elementary bichorologic subdivisions of the biosphere]. Byulleten’ Moskovskogo Obshchestva Ispytatelei Prirody Otdel Biologicheskii 1966; LXXI(1): 123–132.
37. Andreev VL. Klassifikatsionnye postroeniya v ecologii i syistematike (Russian) [Classification constructs in ecology and systematics]. Moscow: Nauka; 1980.
38. Syomkin BI. Deskriptivnye mnozhestvas i ih prilozheniya (Russian) [Descriptive sets and their applications]. In: Syomkin BI (editor). Research of systems. 1. Analysis of complex systems. Vladivostok: Pacific. Institute of Geography. Far East Scientific Center of the Academy of Sciences of the USSR; 1973. p. 83–94.
39. Harbaugh JW, Bonham-Carter G. Computer simulation in geology. New York, London, Sydnye, Toronto: Wiley-InterScience; 1970.
40. Gordon C, Cooper C, Senior CA, et al. The simulation of SST, sea ice extents and ocean heat transport in a version of the Hadley Centre coupled model without flux adjustments. Climate Dynamics 2000; 16: 147–168. doi: 10.1007/s003820050010.
41. Pope VD, Gallani ML, Rowntree PR, Stratton RA. The impact of new physical parametrizations in Hadley Centre climate model: HadCM3. Climate Dynamics 2000; 16: 123–146. doi: 10.1007/s003820050009.
42. Schmidt GA, Ruegy R, Hansen JE, et al. Present day atmospheric simulations using GISS Model E: Comparison to in-situ, satellite and reanalysis data. Journal Climate 2006; 19: 153–192.
43. Hansen J, Sato M, Ruedy R, et al. Dangerous human-made interference with climate: A GISS model E study. Climate Dynamics 2007; 7: 2287–2312. doi: 10.5194/acp-7-2287-2007.
44. Menzhulin GV, Savvateev SP. Mirovaya prodovol’stvennaya problema I sovremennoe global’noe poteplenie (Russian) [World food program and contemporary global warming]. In: Budyko MI (editor). Izmeneniya klimata i ego posledstviya. St-Petersburg: Nauka; 2002. p. 122–151.
45. Kolomyts EG, Sharaya LS. Vliyanie global’nogo potepleniya na landshaftnuyu strukturu Sevenogo Kavkaza (Russian) [The impact of global warming on the landscape structure of the North Caucasus]. Izvestiya RAN. Seriya Geograficheskaya 2012; 4: 52–68.
46. Kustler G. ABC of information theory. In: Yockey HP (editor). Information theory in biology. London, New York, Los Angeles: Pergamon Press; 1957. p. 5–48.
47. Volobuev VR. Vvedenie v energetiku pochvoobrazovanita (Russian) [Introduction to the energetics of soil formation]. Moscow: Nauka; 1974.
48. Gerasimov IP, Velichko AA (editors). Paleogeografiya Evropy za poslednie sto tysyach let (Atlas-mionografiya) (Russian) [Paleogeography of Europe for the last hundred thousand years (Atlas-monography)]. Moscow: Nauka; 1982.
49. Velichko AA, Grichuk VP, Gurtovaya EE, Zelikson EM. Paleoclimat territorii SSSR v optimum poslednego (mikulinskogo) mezhlenikov’ya (Russian) [Paleoclimate of the territory of the USSR at the optimum of the last (Mikulino) interglacial]. Izvestiya RAN (Akad. Nauk SSSR). Seriya Geograficheskaya 1983; 6: 30–45.
50. Velichko AA, Klimanov VA. Klimaticheskie usloviya Severnogo polushariya 5–6 tysyach let nazad (Russian) [Climatic conditions of the Northern Hemisphere 5–6 thousand years ago]. Izvestiya RAN (Akad. Nauk SSSR). Seriya Geograficheskaya 1990; 5: 38–52.
51. Neishtadt MI. Regional’nye zakonomernosti istorii phitotsenozov SSSR v golotsene po paleogeographicheskim dannym (Russian) [Regional patterns of the history of phytocenoses of the USSR in the Holocene according to palynological data]. In: Gerasimov IP (editor). History of biogeocenoses of the USSR in the Holocene. Moscow: Nauka; 1976. p. 79–91.
52. Beruchashvili NL, Arutyunov SR, Tediashvili AG. Landshaftnaya karta Kavkaza. M-b: 1:1000 000 (Russian) [Landscape Map of the Caucasus. Sc. 1:1000 000]. Tbilisi: Izdatel’stvo Tbilisskogo un-ta; 1979.
53. Izrael YuA (editor). Sostoyanie I kompleksny monitoring prirodnoy sredy i klimata. Predely izmeneny (Russian) [Condition and comprehensive monitoring of the natural environment and climate. Limits of change]. Moscow: Nauka; 2001.
54. Volobuev VR. Ekologiya pochv (oserki) (Russian) [Soil ecology (essays)]. Baku: Publishing House of AN Azerb. SSR; 1963.
55. Emanuel WR, Shugart HH, Stevenson MR. Climatic changes and the boreal-scale distribution of terrestrial ecosystem complexes. Climatic Change 1985; 7: 29–43. doi: 10.1007/BF00139439
56. Holten JI, Paulsen G, Oechel WC (editors). Impacts of climatic change on natural ecosystems (with emphasis on boreal and arctic/alpine areas). Trondheim: NINA and DN; 1993.
57. Shary PA. Analytical GIS Eco [Internet]. GIS Eco; 2001. Available from: http//www.giseco.info.
58. MacMillan RA, Torregrosa A, Moon D, et al. Automated predictive mapping of ecological entities. In: Hengl T, Reuter HT (editors). Geomorphometry: Concepts, software, applications. Developments in soil science. Amsterdam, The Netherlands: Elsevier; 2009. p. 551–578. doi: 10.1016/S0166-2481(08)00024-X.
59. Shary PA. Models of topography. In. Zhou Q, Lees B, Tang G (editors). Advances in digital Terrain analysis. Lecture notes in geoinformation and cartography. Berlin: Springer-Verlag; 2008. p. 29–57.
60. Sharaya LS. Predskazatel’noe kartiro vanie lesnyh ekosisten v geoekologii (Russian) [Predictive mapping of forest ecosystems in geoecology]. Povolzhskiy Ecological Journal 2009; 3: 249–257.
61. Pike RJ, Evans IS, Hengl T. Geomorphometry: A brief guide. In: Hengl T, Reuter HI (editors). Geomorphometry: Concepts, software, applications. Developments in soil science. Amsterdam, The Netherlands: Elsevier; 2009. p. 3–30. doi: 10.1016/S0166-2481(08)00001-9.
62. Shary PA, Sharaya LS, Mitusov AV. Fundamental quantitative methods of and surface analysis. Geoderma 2002; 107(1–2): 1–32. doi: 10.1016/S0016-7061(01)00136-7.
63. Puzachenko YuG. Metodologicheskie osnovy geographicheskogo prognoza i ohrany sredy (Russian) [Methodological foundations of geographical forecasting and environmental protection]. Moscow: URAO Publishing House; 1998.
64. Zeydis IM, Kruzhalin VI, Simonov YuG, et al. Obshchie svoystva dinamiki geosistem (Russian) [General properties of the dynamics of geosystems]. Vestnik MGU. Seriya 5. Geographiya 2001; (4): 3–8.
65. Puzachenko YuG. Invariantnost’ geosistem i ih komponentov (Ruaasian) [Invariance of geosystems and their components]. In: Armand AD, Dolgushin Iyu (editors). Stability of geosystems. Moscow: Nauka; 1983. p. 32–41.
DOI: https://doi.org/10.24294/nrcr.v6i1.2054
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Erland G. Kolomyts
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This site is licensed under a Creative Commons Attribution 4.0 International License.