Energy recovery potential of urban solid waste of Solan district, H.P, India
Vol 6, Issue 1, 2023
VIEWS - 378 (Abstract) 223 (PDF)
Abstract
Keywords
Full Text:
PDFReferences
1. Avtar R, Tripathi S, Aggarwal AK, Kumar P. Population-Urbanization-Energy Nexus: A review. Resources 2019; 8(3): 136. doi: 10.3390/resources8030136.
2. Gutberlet J. Waste in the city: Challenges and opportunities for urban agglomerations. In: Ergen M (editor). Urban agglomeration. London: Intech Open; 2018. p. 191–208. doi: 10.5772/intechopen.72047.
3. Mohammed A, Elias E. Domestic solid waste management and its environmental impacts in Addis Ababa city. Journal of Environment and Waste Management 2017; 4(1): 194–203.
4. Rathi S. Optimization model for integrated municipal solid waste management in Mumbai, India. Environment and Development Economics 2007; 12: 105–121. doi: 10.1017/S1355770X0600341X.
5. Hoornweg D, Bhada-Tata P, Kennedy C. Environment: Waste production must peak this century. Nature 2013; 502: 615–617. doi: 10.1038/502615a.
6. Sharholy M, Ahmad K, Vaishya RC, Gupta RD. Municipal solid waste characteristics and management in Allahabad, India. Waste Management 2005; 27(4): 490–496. doi: 10.1016/j.wasman.2006.03.001
7. Rachel OA, Komine H, Yasuhara K et al. Municipal solid waste management in developed and developing countries—Japan and Nigeria as case studies [Internet]. Ibaraki: Geotechnical Engineering Laboratory; 2009. Available from: http://wwwgeo.civil.ibaraki.ac.jp/komine/mypapers/JGSPaper/2009/JGS2009(973)Rachel.pdf.
8. Singh S. Solid waste management in urban India: Imperatives for improvement. ORF Occasional Paper No. 283 [Internet]. Delhi: Observer Research Foundation; 2020 [published 2020 Nov 19]. Available from: https://www.orfonline.org/research/solid-waste-management-in-urban-india-imperatives-for-improvement-77129/.
9. Aslani H, Taghipour H. Seasonal characterization and quantification of municipal solid waste: Energy content and statistical analysis. Journal of Advances in Environmental Health Research 2018; 6(1): 34–43. doi: 10.22102/jaehr.2018.105728.1053.
10. Senzige JP, Makinde DO, Njau KN, Nkansah-Gyeke Y. Factors influencing solid waste generation and composition in urban areas of Tanzania: The case of Dar-es-Salaam. American Journal of Environmental Protection 2014; 3(4): 172–178. doi: 10.11648/j.ajep.20140304.11.
11. Ansah B. Characterization of municipal solid waste in three selected communities in the Tarkwa township of Tarkwa Nsuaem Municipality in Ghana [Master’s thesis]. Ashanti, Ghana: Kwame Nkrumah University of Science and Technology; 2014.
12. Thanh NP, Matsui Y, Fujiwara T. Household solid waste generation and characteristic in a Mekong Delta city, Vietnam. Journal of Environmental Management 2010; 91(11): 2307–2321. doi: 10.1016/j.jenvman.2010.06.016.
13. Late A, Mule MB. Composition and characterization study of solid waste from Aurangabad city. Universal Journal of Environmental Research and Technology 2013; 3(1): 55–60.
14. Powell JT, Townsend TG, Zimmerman JB. Estimates of solid waste disposal rates and reduction targets for landfill gas emissions. Nature Climate Change 2016; 6: 162–165. doi: 10.1038/nclimate2804.
15. Stocker TF, Qin D, Plattner GK, et al. (editors). Climate change 2013: The physical science basis. Contribution of Working Group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge and New York: Cambridge University Press; 2013. p. 1535.
16. Ali Khan MZ, Abu-Gharah ZH. New approach for estimating energy content of municipal solid waste. Journal of Environmental Engineering 1991; 117(3): 376–380. doi: 10.1061/(ASCE)0733-9372(1991)117:3(376).
17. CPHEEO. Manual on municipal solid waste management. New Delhi, India: Ministry of Housing and Urban Affairs; 2000. p. 265.
18. Houghton JT, Meira Filho LG, Lim B, et al. (editors). Revised 1996 IPCC guidelines for national greenhouse gas inventories. Bracknell: IPCC/OECD/IEA; 1996.
19. Eggleston HS, Buendia L, Miwa K, et al. (editors). 2006 IPCC guidelines for national greenhouse gas inventories. Hayama: Institute for Global Environmental Strategies; 2006.
20. Pandit J, Bhardwaj SK. Quantification, characterization and footprint appraisal of solid waste in urban areas of Solan district in Himachal Pradesh. International Journal of Chemical Studies 2020; 8(5): 202–210. doi: 10.22271/chemi.2020.v8.i5d.10607.
21. Martin M. World’s largest and most dynamic scavenger movement. Biocycle 2010; 51(10): 32–33.
22. Tsheleza V, Ndhleve S, Kabiti HM, et al. Vulnerability of growing cities to solid waste-related environmental hazards: The case of Mthatha, South Africa. Jàmbá: Journal of Disaster Risk Studies 2019; 11(1): a632. doi: 10.4102/jamba.v11i1.632.
23. Nandan A, Yadav BP, Baksi S, Bose D. Recent scenario of solid waste management in India. World Scientific News 2017; 66: 56–74.
24. Dolgen D, Sarptas H, Alpaslan N, Kucukgul O. Energy potential of municipal solid wastes. Energy Sources 2005; 27(15): 1483–1492. doi: 10.1080/009083190523820.
25. Singh CK, Kumar A, Roy SS. Quantitative analysis of the methane gas emissions from municipal solid waste in India. Scientific Reports 2018; 8: 2913. doi: 10.1038/s41598-018-21326-9.
26. Indian Network for Climate Change Assessment. India: Greenhouse gas emissions 2007. New Delhi: Ministry of Environment and Forests; 2010. p. 84.
DOI: https://doi.org/10.24294/nrcr.v6i1.1945
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Jyotsana Pandit, Anish Kumar Sharma, SK Bhardwaj
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This site is licensed under a Creative Commons Attribution 4.0 International License.