Deep-sea crustaceans (400–3600 m) biodiversity in the northwestern Gulf of Mexico

Daniel Torruco

Article ID: 10554
Vol 8, Issue 1, 2025


Abstract


Between 2016 and 2017, four oceanographic cruises were carried out in the Perdido Fold Belt area, in the northeastern province of the Gulf of Mexico. Benthic fauna was collected by bottom trawling with a benthic sled at 27 sampling sites, ranging from shallow to abyssal depths. The results obtained with the group of crustaceans are presented, selecting only the trawls representative of the bathyal benthic provinces (200–2000 m) and the abyssal plains (2000–6000 m) for analysis. Thus, 31 trawls with depths of 470 to 3600 m were recorded. The group was represented by 35 families, 72 genera, and 95 species. The lowest abundance/biomass recorded at the sampling sites was 2 org·ha−1/17.67 g·ha−1, while the highest was 400 org·ha−1/5042.62 g·ha−1. The highest species richness (16 species) was found at depths of 470 m, and the lowest (1 species) at 950–1000 m. Consequently, the lowest diversity (0.0 bits·ind−1) was recorded at 950–1000 m and the highest (2.943 bits·ind−1) at 470 m. The dominance of the top 5 species on each cruise reaches more than 50% for each, with 3 species remaining in this classification across all 4 cruises. The similarity given by the Bray-Curtis index associates similar depths. The NMDS (Non-metric Multidimensional Scaling) was used for the species ordinations because it is suitable for non-normal data or data that is discontinuous in scale, and shows most of the species close to the origin of the axes, only the most abundant species or those with the greatest weight are separated at the first crossing, in the rest there is no defined pattern. The sea bottom, as it presents physical conditions of great stability, presents a reduced biodiversity where biotic variables, such as competitive exclusion, resource division, and predation, are essential factors that define the structure and functioning of the communities of mega crustaceans in this area.


Keywords


megafauna; diversity; malacostraca; deep waters; Gulf of Mexico

Full Text:

PDF


References


1. CNH (Comisión Nacional de Hidrocarburos). Proposed five-year plan for tendering contractual areas 2015-2019 (Spanish). 2015. Available online: https://www.gob.mx/cms/uploads/attachment/file/73641/AcuerdoCNH.07.005_15_PlanQuinquenal.pdf (accessed on 10 October 2024).

2. Ayma A, Aguzzi J, Canals M, et al. Comparison between ROV video and Agassiz trawl methods for sampling deep water fauna of submarine canyons in the Northwestern Mediterranean Sea with observations on behavioural reactions of target species. Deep Sea Research Part I: Oceanographic Research Papers. 2016; 114: 149-159. doi: 10.1016/j.dsr.2016.05.013

3. Ruiz T, Vázquez-Bader AR, Gracia A. Epibenthic megacrustacean assemblages in the Campeche Sound, Gulf of Meico. Revista Mexicana de Biodiversidad. 2013; 84: 280-290. doi:10.7550/rmb.27685

4. Bluhm B, Iken K, Mincks Hardy S, et al. Community structure of epibenthic megafauna in the Chukchi Sea. Aquatic Biology. 2009; 7: 269-293. doi: 10.3354/ab00198

5. Kaiser MJ, Edwards DB, Armstrong PJ, et al. Changes in megafaunal benthic communities in different habitats after trawling disturbance. ICES Journal of Marine Science. 1998; 55(3): 353-361. doi: 10.1006/jmsc.1997.0322

6. Kumar RT, Sampson A, Dorathy E, et al. Study on Environmental impact on oil and gas activities in Ghana—Analysis by graphical approaches using Matlab. International Journal of Engineering Trends and Technology. 2013.

7. Gold M, Mika K, Horowitz C, Herzog M, Leitner, L. Pritzker Environmental Law and Policy Briefs. UCLA: Emmet Center Climate Change and Environments. Pritzker Br; 2013.

8. Stout SA, Rouhani S, Liu B, et al. Assessing the footprint and volume of oil deposited in deep-sea sediments following the Deepwater Horizon oil spill. Marine Pollution Bulletin. 2017; 114(1): 327-342. doi: 10.1016/j.marpolbul.2016.09.046

9. Ashford OS, Kenny AJ, Barrio Froján CRS, et al. Investigating the environmental drivers of deep‐seafloor biodiversity: A case study of peracarid crustacean assemblages in the Northwest Atlantic Ocean. Ecology and Evolution. 2019; 9(24): 14167-14204. doi: 10.1002/ece3.5852

10. Gracia A, Vázquez-Bader AR. Deep-Water Penaeoid Shrimp of the Southern Gulf of Mexico Upper Slope: Distribution, Abundance, and Fishery Potential. In: Deep-sea pycnogonids and crustaceans of the Americas. Springer Nature, Zwitserland; 2021. doi: 10.1007/978-3-030-58410-8_9

11. Abad E, Preciado I, Serrano A, et al. Demersal and epibenthic assemblages of trawlable grounds in the northern Alboran Sea (western Mediterranean). Scientia Marina. 2007; 71(3): 513-524. doi: 10.3989/scimar.2007.71n3513

12. Vázquez-Bader AR, Gracia A. Deep-Sea megascrustacean biodiversity (Crustacea, decapoda) in the south Gulf of Mexico. In: Deep-sea pycnogonids and crustaceans of the Americas. Springer Nature, Zwitserland; 2021. doi: 10.1007/978-3-030-58410-8_20

13. Gates AR, Jones DOB. Recovery of Benthic Megafauna from Anthropogenic Disturbance at a Hydrocarbon Drilling Well (380 m Depth in the Norwegian Sea). PLoS ONE. 2012; 7(10): e44114. doi: 10.1371/journal.pone.0044114

14. Fanelli E, Papiol V, Cartes J, et al. Trophic webs of deep-sea megafauna on mainland and insular slopes of the NW Mediterranean: a comparison by stable isotope analysis. Marine Ecology Progress Series. 2013; 490: 199-221. doi: 10.3354/meps10430

15. Vinagre C, Mendonça V, Narciso L, et al. Food web of the intertidal rocky shore of the west Portuguese coast – Determined by stable isotope analysis. Marine Environmental Research. 2015; 110: 53-60. doi: 10.1016/j.marenvres.2015.07.016

16. Williams A, Althaus F, Dunstan PK, et al. Scales of habitat heterogeneity and megabenthos biodiversity on an extensive Australian continental margin (100–1100 m depths). Marine Ecology. 2010; 31(1): 222-236. doi: 10.1111/j.1439-0485.2009.00355.x

17. Williams A, Schlacher TA, Rowden AA, et al. Seamount megabenthic assemblages fail to recover from trawling impacts. Marine Ecology. 2010; 31(s1): 183-199. doi: 10.1111/j.1439-0485.2010.00385.x

18. Kürzel K, Brix S, Brandt A, et al. Pan-Atlantic Comparison of Deep-Sea Macro- and Megabenthos. Diversity. 2023; 15(7): 814. doi: 10.3390/d15070814

19. Thrush S, Hewitt J, Pilditch C, et al. Ecology of Coastal Marine Sediments: Form, Function, and Change in the Anthropocene. Oxford University Press; 2021. doi: 10.1093/oso/9780198804765.001.0001

20. Kuerzel K, Linse K, Brandt A, et al. Pan-Atlantic comparison of deep-water macrobenthos diversity collected by epibenthic sledge sampling and analysis of patterns and environmental drivers. NERC EDS UK Polar Data Centre; 2023. doi: 10.5285/58080F33-884C-4E13-A419-C00CF1BAB6A6

21. Frutos I, Sorbe JC. Suprabenthic assemblages from the Capbreton area (SE Bay of Biscay). Faunal recovery after a canyon turbidity disturbance. Deep Sea Research Part I: Oceanographic Research Papers. 2017; 130: 36-46. doi: 10.1016/j.dsr.2017.10.007

22. Gunton LM, Gooday AJ, Glover AG, et al. Macrofaunal abundance and community composition at lower bathyal depths in different branches of the Whittard Canyon and on the adjacent slope (3500 m; NE Atlantic). Deep Sea Research Part I: Oceanographic Research Papers. 2015; 97: 29-39. doi: 10.1016/j.dsr.2014.11.010

23. Frutos I, Brandt A, Sorbe J. Deep-sea suprabenthic communities: The forgotten biodiversity. Marine Animal Forests: The Ecology of Benthic Biodiversity Hotspots. Springer Cham, Switzerland; 2017.

24. Ashford OS, Kenny AJ, Barrio Froján CRS, et al. Investigating the environmental drivers of deep‐seafloor biodiversity: A case study of peracarid crustacean assemblages in the Northwest Atlantic Ocean. Ecology and Evolution. 2019; 9(24): 14167-14204. doi: 10.1002/ece3.5852

25. Kaiser S, Brandt A, Brix S, et al. Community structure of abyssal macrobenthos of the South and equatorial Atlantic Ocean - Identifying patterns and environmental controls. Deep Sea Research Part I: Oceanographic Research Papers. 2023; 197: 104066. doi: 10.1016/j.dsr.2023.104066

26. Bosch S, Tyberghein L, Deneudt K, et al. In search of relevant predictors for marine species distribution modelling using the MarineSPEED benchmark dataset. Diversity and Distributions. 2017; 24(2): 144-157. doi: 10.1111/ddi.12668

27. Di Franco D, Linse K, Griffiths HJ, et al. Drivers of abundance and spatial distribution in Southern Ocean peracarid crustacea. Ecological Indicators. 2021; 128: 107832. doi: 10.1016/j.ecolind.2021.107832

28. Bridges AEH, Barnes DKA, Bell JB, et al. Depth and latitudinal gradients of diversity in seamount benthic communities. Journal of Biogeography. 2022; 49(5): 904-915. doi: 10.1111/jbi.14355

29. Howell KL. A benthic classification system to aid in the implementation of marine protected area networks in the deep/high seas of the NE Atlantic. Biological Conservation. 2010; 143(5): 1041-1056. doi: 10.1016/j.biocon.2010.02.001

30. Hiddink JG, Jennings S, Kaiser MJ, et al. Cumulative impacts of seabed trawl disturbance on benthic biomass, production, and species richness in different habitats. Canadian Journal of Fisheries and Aquatic Sciences. 2006; 63(4): 721-736. doi: 10.1139/f05-266

31. Cánovas-Molina A, Montefalcone M, Bavestrello G, et al. A new ecological index for the status of mesophotic megabenthic assemblages in the mediterranean based on ROV photography and video footage. Continental Shelf Research. 2016; 121: 13-20. doi: 10.1016/j.csr.2016.01.008

32. Sturdivant SK, Guarinello ML, Germano JD, Carey DA. Reshaping perspectives of deep-sea benthic function. Frontiers in marine science; 2024. doi: 10.3389/fmars.2024.1383754

33. Pitcher C, Ellis N, Venables W, et al. Effects of trawling on sessile megabenthos in the Great Barrier Reef and evaluation of the efficacy of management strategies. ICES Journal of Marine Science. 2014.

34. Di Franco D, Linse K, Griffiths HJ, et al. Abundance and Distributional Patterns of Benthic Peracarid Crustaceans From the Atlantic Sector of the Southern Ocean and Weddell Sea. Frontiers in Marine Science. 2020; 7. doi: 10.3389/fmars.2020.554663

35. Blanchard AL, Parris CL, Knowlton AL, et al. Benthic ecology of the northeastern Chukchi Sea. Part II. Spatial variation of megafaunal community structure, 2009–2010. Continental Shelf Research. 2013; 67: 67-76. doi: 10.1016/j.csr.2013.04.031

36. Ortiz-Pérez P, De la Lanza-Espino G. Differentiation of Mexico’s coastal space: a regional inventory (Spanish). Instituto de Geografía UNAM. 2006.

37. Caso M, Pisanty I, Ezcurra E. Environmental Diagnosis of the Gulf of Mexico (Spanish). Tomo I. Secretaría de Medio Ambiente y Recursos Naturales, Instituto Nacional de Ecología. Instituto de Investigación para Estudios del Golfo de México. INECOL; 2004.

38. Patiño-Ruiz J, Rodríguez-Uribe MA, Hernández-Flores ER, et al. The Mexican Perdido Fold Belt. Structure and Oil Potential (Spanish). PEMEX-Activo Regional de Explotación Región Norte. Poza Rica, Veracruz. 2010.

39. Vázquez- Meneses, M. Gravity Tectonics, Western Gulf of Mexico [PhD thesis]. Royal Holloway, London University; 2005.

40. Trudgill BD, Rowan MG, Fiduk JC, et al. The Perdido Fold Belt. Northwestern Deep Gulf of Mexico, Part 2: Seismic Stratigraphy and Petroleum Systems. American Association of Petroleum Geologists Bulletin. 1999.

41. PEP. Regional Petroleum Systems Modeling, Centauro Fold Belt Perdido II, Plays and Prospects Study-2012 (Spanish). PEMEX EyP Activo de Exploración Aguas Profundas Norte Poza Rica (B); 2013.

42. Benedict JE. The anomura collections made by the Fish Hawk expedition to Porto Rico. Bulletin of United States Fish Commission. House of Rep, Representatives; 1900.

43. Powers LW. Crabs (Brachyura) of the Gulf of Mexico. University of Texas Marine Science Institute. Contribution in Marine Science; 1977.

44. Abele LG, Kin W. An Illustrated Guide to the Marine Decapod Crustaceans of Florida. Florida State University; 1986.

45. Martin JW, Davies GE. An Updated classification of the recent crustacea. Natural History Museum of Los Angeles Country. Science Series; 2001.

46. Herrera Moreno A, Betancourt Fernández L. Stomatopod species (crustacea : malacostraca : stomatopoda) known from Hispaniola (Spanish). Ciencia y Sociedad. 2003; 28(2): 271-278. doi: 10.22206/cys.2003.v28i2.pp271-78

47. Orlóci L, Orlóci M. Edge detection in vegetation: Jornada revisited. Journal of Vegetation Science. 1990; 1(3): 311-324. doi: 10.2307/3235706

48. Magurran AE. Ecological Diversity and Its Measurement. Springer Netherlands; 1988. doi: 10.1007/978-94-015-7358-0

49. Lance GN, Williams WT. A General Theory of Classificatory Sorting Strategies: 1. Hierarchical Systems. The Computer Journal. 1967; 9(4): 373-380. doi: 10.1093/comjnl/9.4.373

50. Pielou, E.C. The Interpretation of Ecological Data: A Primer on Classification and Ordination. J. Wiley and Sons. 1984.

51. López-González E, Hidalgo Sánchez R. Escalamiento Multidimensional No Métrico. Un ejemplo con R empleando el algoritmo SMACOF. Estudios sobre Educación. 2016; 18: 9-35. doi: 10.15581/004.18.4650

52. De la Cruz AG. ANACOM, System for the analysis of communities (Spanish). Manual del usuario; 1994.

53. McGuire T. History of the offshore oil and gas industry in southern Louisiana. United States Department of the Interior. MMS Golfo de Mexico Region OCS; 2008.

54. Christensen V. Ecosystem maturity—towards quantification. Ecological. Modelling. 1995; 77: 3-32. doi: 10.1016/0304-3800(93)E0073-C

55. Pequegnat WE, Gallaway BJ, Pequegnat LH. Aspects of the Ecology of the Deep-water Fauna of the Gulf of Mexico. American Zoologist. 1990; 30(1): 45-64. doi: 10.1093/icb/30.1.45

56. Bober S, Brix S, Riehl T, et al. Does the Mid-Atlantic Ridge affect the distribution of abyssal benthic crustaceans across the Atlantic Ocean?. Deep Sea Research Part II: Topical Studies in Oceanography. 2018; 148: 91-104. doi: 10.1016/j.dsr2.2018.02.007

57. Haedrich RL, Devine JA, Kendall VJ. Predictors of species richness in the deep-benthic fauna of the northern Gulf of Mexico. Deep Sea Research Part II: Topical Studies in Oceanography. 2008; 55(24-26): 2650-2656. doi: 10.1016/j.dsr2.2008.09.003

58. Wei C, Rowe G, Hubbard G, et al. Bathymetric zonation of deep-sea macrofauna in relation to export of surface phytoplankton production. Marine Ecology Progress Series. 2010; 399: 1-14. doi: 10.3354/meps08388

59. Solís-Marín FA, Laguarda-Figueras A, Honey-Escandón M. Biodiversidad de equinodermos (Echinodermata) en México. Revista Mexicana de Biodiversidad. 2014; 85: 441-449. doi: 10.7550/rmb.31805

60. Torruco D. Invertebrate Megafauna in the Perdido Fold Belt Polygon, Gulf of Mexico, Mexico. Oceanography & Fisheries. 2018; 8(4). doi: 10.19080/ofoaj.2018.08.555744

61. Rubio-Polania JC, González-Solis A, Enriquez C, et al. Community structure of megabenthos of Perdido Fold Belt (Tamaulipas, Mexico) and its relationship with the oceanographic and sediment parameters including potential pollutants. Marine Biology Research. 2022; 18(7-8): 477-494. doi: 10.1080/17451000.2022.2137198

62. Company JB, Maiorano P, Tselepides A, et al. Deep-sea decapod crustaceans in the western and central Mediterranean Sea: preliminary aspects of species distribution, biomass and population structure. Scientia Marina. 2004; 68(S3): 73-86. doi: 10.3989/scimar.2004.68s373

63. Rotlland G, Verdi A, Santos-Betancourt R, et al. Diversity, abundance and biomass of deep-sea decapods crustaceans of the Uruguay continental slope in the southwestern Atlantic Oceans. In: Deep-sea pycnogonids and crustaceans of the Americas. Springer Nature, Zwitserland; 2021. doi: 10.1007/978-3-030-58410-8_19

64. Pajuelo JG, Tray-Potella R, Santana JI, González JA. The community of deep-sea decapod crustaceans between 175-2600 m. in submarine canyon of a volcanic oceanic island (central-eastern Atlantic). Deep Sea Research I. 2015; 105: 83-95. doi: 10.1016/j.dsr.2015.08.013

65. Lin H, Lin P, Chang N, et al. Trophic structure of megabenthic food webs along depth gradients in the South China Sea and off northeastern Taiwan. Marine Ecology Progress Series. 2014; 501: 53-66. doi: 10.3354/meps10681

66. Birchenough SNR, Reiss H, Degraer S, et al. Climate change and marine benthos: a review of existing research and future directions in the North Atlantic. WIREs Climate Change. 2015; 6(2): 203-223. doi: 10.1002/wcc.330

67. Tecchio S, Ramírez-Llodra E, Sardà F, et al. Biodiversity of deep-sea demersal megafauna in western and central Mediterranean basins. Scientia Marina. 2010; 75(2): 341-350. doi: 10.3989/scimar.201175n2341

68. Swan JA, Jamieson AJ, Linley TD, et al. Worldwide distribution and depth limits of decapod crustaceans (Penaeoidea, Oplophoroidea) across the abyssal-hadal transition zone of eleven subduction trenches and five additional deep-sea features. Journal of Crustacean Biology. 2021; 41(1). doi: 10.1093/jcbiol/ruaa102

69. Rex M, Etter R, Morris J, et al. Global bathymetric patterns of standing stock and body size in the deep-sea benthos. Marine Ecology Progress Series. 2006; 317: 1-8. doi: 10.3354/meps317001

70. Coppari M, Gori A, Rossi S. Size, spatial, and bathymetrical distribution of the ascidian Halocynthia papillosa in Mediterranean coastal bottoms: benthic–pelagic coupling implications. Marine Biology. 2014; 161(9): 2079-2095. doi: 10.1007/s00227-014-2488-5

71. Durden JM, Bett BJ, Jones DOB, et al. Abyssal hills—hidden source of increased habitat heterogeneity, benthic megafaunal biomass and diversity in the deep sea. Progress in Oceanography. 2015; 137: 209-218. doi: 10.1016/j.pocean.2015.06.006

72. Zavala‐Hidalgo J, Morey SL, O’Brien JJ. Seasonal circulation on the western shelf of the Gulf of Mexico using a high‐resolution numerical model. Journal of Geophysical Research: Oceans. 2003; 108(C12). doi: 10.1029/2003jc001879

73. Zavala-Hidalgo J, Gallegos-García A, Martínez-López B, et al. Seasonal upwelling on the Western and Southern Shelves of the Gulf of Mexico. Ocean Dynamics. 2006; 56(3-4): 333-338. doi: 10.1007/s10236-006-0072-3

74. Khan TM, Griffiths HJ, Whittle RJ, et al. Network analyses on photographic surveys reveal that invertebrate predators do not structure epibenthos in the deep (~2000 m) rocky Powell Basin, Weddell Sea, Antarctica. Frontiers in Marine Science. 2024; 11. doi: 10.3389/fmars.2024.1408828

75. Tunnell JW, Ward H. Habitats and Biota of the Gulf of Mexico: An Overview In: Habitats and Biota of the Gulf of Mexico: Before the Deepwater Horizon Oil Spill. Water Quality, Sediments, Sediment Contaminants, Oil and Gas Seeps, Coastal Habitats, Offshore Plankton and Benthos, and Shellfish; 2017.

76. Torruco D, Chávez EA, González-Solís MA. Spatiotemporal variation in the structural organization of demersal communities in the southwestern Gulf of Mexico (Spanish). Revista de Biologìa Tropical; 2006.

77. Ciércoles C, García-Ruíz C, Abelló P, et al. Decapod crustacean assemblages on trawlable grounds in the northern Alboran Sea and Gulf of Vera. Scientia Marina. 2022; 86(3): e039. doi: 10.3989/scimar.05265.039

78. Hernández-Díaz Y, Solís-Marín FA, Simões N, et al. First record of Ophioderma ensiferum (Echinodermata: Ophiuroidea) from the southeastern continental shelf of the Gulf of Mexico and from an anchialine cave. Revista Mexicana de Biodiversidad. 2013; 84(2): 676-681. doi: 10.7550/rmb.30737

79. Solís-Marín FA, Laguarda-Figueras A, Durán-González A, et al. Biodiversity of echinoderms (Echinodermata) from the Mexican deep sea (Spanish). Final de La Frontera El océano profundo; 2014.

80. Kürzel K, Kaiser S, Lörz AN, et al. Correct Species Identification and Its Implications for Conservation Using Haploniscidae (Crustacea, Isopoda) in Icelandic Waters as a Proxy. Frontiers in Marine Science; 2022. doi: 10.3389/fmars.2021.795196

81. Quintanar-Retama O, Vázquez-Bader AR, Gracia A. Macrofauna abundance and diversity patterns of deep sea southwestern Gulf of Mexico. Frontiers in Marine Science; 2023. doi: 10.3389/fmars.2022.1033596

82. Saeedi H, Warren D, Brandt A. The Environmental Drivers of Benthic Fauna Diversity and Community Composition. Frontiers in Marine Science. 2022; 9. doi: 10.3389/fmars.2022.804019

83. Lara-Lara JR, Arenas-Fuentes V, Bazán-Guzmán C, et al. Marine ecosystems (Spanish). In: Capital Natural de México. Conocimiento actual de la biodiversidad; 2008.

84. Lessard-Pilon SA, Podowski EL, Cordes EE, et al. Megafauna community composition associated with Lophelia pertusa colonies in the Gulf of Mexico. Deep Sea Research Part II: Topical Studies in Oceanography. 2010; 57(21-23): 1882-1890. doi: 10.1016/j.dsr2.2010.05.013

85. Montagna PA, Baguley JG, Cooksey C, et al. Deep-Sea Benthic Footprint of the Deepwater Horizon Blowout. PLoS ONE. 2013; 8(8): e70540. doi: 10.1371/journal.pone.0070540




DOI: https://doi.org/10.24294/nrcr10554

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Author(s)

License URL: https://creativecommons.org/licenses/by/4.0/

This site is licensed under a Creative Commons Attribution 4.0 International License.