Polyblends and composites of poly (lactic acid) (PLA): a review on the state of the art

Krishna Prasad Rajan1, Selvin P. Thomas12, Aravinthan Gopanna2, Ahmed Al-Ghamdi1, Murthy Chavali3

Article ID: 723
Vol 1, Issue 1, 2018

VIEWS - 2028 (Abstract) 122 (PDF)

Abstract


Polymers obtained from renewable sources are gaining popularity over their petroleum based counter parts in recent years due to their capability to address the environmental pollution related concerns emanating from the widespread usage of synthetic polymers. Even though the polymers from renewable sources are attractive in an environmental point of view, some of the property limitations and the high cost of these materials pose limitations for their extensive commercial applications. These aspects opened the door for a large chunk of research activities in development of polyblends and composites containing polymers from renewable sources as one of the components. Poly (lactic acid) (PLA) is one of the most discussed and commercialized polymer originated from renewable resources. Even though it has many useful properties, certain disadvantages like high brittleness, low impact resistance etc. limit the wide spread commercialization of PLA. In this review article, the recent research activities which are aimed to fill this gap by various modifications of PLA are discussed with special emphasis on the latest research advancements in the field of biodegradable and non biodegradable systems containing PLA.


Keywords


Poly (lactic acid); Polyblends; Composites; Modifications

Full Text:

PDF


References


1. Benninga H. A history of lactic acid making: a chapter in the history of biotechnology, Springer, 1990.

2. Prescott SC, Dunn CG. Industrial microbiology, 1949.

3. Reddy G, Altaf M, Naveena BJ, et al. Biotechnol. Adv. 2008; 26: 22.

4. Abdel-Rahman MA, Tashiro Y, Sonomoto K. Biotechnol. Adv. 2013.

5. D. Garlotta. J. Polym. Environ. 2001; 9: 63.

6. Mehta R, Kumar V, Bhunia H. Journal of Macromolecular Science, Part C 2005; 45: 325.

7. Park SJ, Kim MK, Lee SY. Chem. Eng. Prog. 2012; 108: 51.

8. Lopes MS, Jardini AL, Filho RM. Procedia Engineering 2012; 42: 1402.

9. Lasprilla AJ, Martinez GA, Lunelli BH, et al. Biotechnol. Adv. 2012; 30: 321.

10. Auras RA, Lim LT, Selke SE, et al. Poly (lactic acid): synthesis, structures, properties, processing, and applications, Wiley 2011.

11. Henton DE, Gruber P, Lunt J, et al. Natural Fibers, Biopolymers, and Biocomposites, Taylor & Francis, Boca Raton, FL, 2005; 527.

12. Drumright RE, Gruber PR, Henton DE. Adv. Mater. 2000; 12: 1841.

13. Jamshidian M, Tehrany EA, Imran M, et al. Comprehensive Reviews in Food Science and Food Safety 2010; 9: 552.

14. Kawashima N, Ogawa S, Obuchi S, et al. Biopolymers Online, 2002; 251.

15. Rasal RM, Janorkar AV, Hirt DE. Prog. Polym. Sci. 2010; 35: 338.

16. Wang Y, Hillmyer MA. J. Polym. Sci., Part A: Polym. Chem. 2001; 39: 2755.

17. Anderson KS, Lim SH, Hillmyer MA. J. Appl. Polym. Sci. 2003; 89: 3757.

18. Kim Y, Choi C, Kim Y, et al. Fibers and Polymers 2004; 5: 270.

19. Reddy N, Nama D, Yang Y. Polym. Degrad. Stab. 2008; 93: 233.

20. Kaneko H, Saito J, Kawahara N, et al. Controlled/Living Radical Polymerization: Progress in Atrp, ed. K. Matyjasewski, 2009(1023): 357.

21. Choudhary P, Mohanty S, Nayak SK, et al. J. Appl. Polym. Sci. 2011; 121: 3223.

22. Donnelly Z. U.S. Patent Application 2010; 13/264,433.

23. Hong CH. US Patent 8211966 B2, 2012.

24. Hamad K, Kaseem M, Deri F. Journal of Polymer Research, 2011; 18: 1799.

25. Yoo TW, Yoon HG, Choi SJ, et al. Macromolecular Research, 2010; 18: 583.

26. Lee HS, Kim JD. Polym. Compos. 2012; 33: 1154.

27. Xu Y, Loi J, Delgado P, et al. Industrial & engineering chemistry research, 2015; 54: 6108.

28. Bai ZF, Dou Q. 2015.

29. Kang H, Lu X, Xu Y. Polym. Test. 2015; 43: 173.

30. Kim HS, Kim HJ. Fibers and Polymers, 2013; 14: 793.

31. Reddy JP, Misra M, Mohanty A. Advances in Mechanical Engineering, 2013.

32. Nunez K, Rosales C, Perera R, et al. Polym. Bull. 2011; 67: 1991.

33. Gallego R, López-Quintana S, Basurto F, et al. Polym. Eng. Sci., 2013.

34. Xu Y, Delgado P, Todd AD, et al. Polymer, 2016; 102: 73.

35. Aghjeh MR, Kazerouni Y, Otadi M, et al. Composites Part B: Engineering, 2018; 137: 235.

36. Rajan KP, Al-Ghamdi A, Thomas SP, et al. J. Thermoplast. Compos. Mater.2017; 0: 0892705717734595.

37. Rajan KP. 2016.

38. Bijarimi M, Ahmad S, Alam AM. Polym. Bull. 2017; 74: 3301.

39. Essawy HA, Helaly FM, Shabana MA. J. Elastomers Plast. 2007; 39: 303.

40. Wang N, Yu J, Ma X. Polym. Int. 2007; 56: 1440.

41. Schwach E, Six JL, Averous L. J. Polym. Environ. 2008; 16: 286.

42. Li H, Huneault MA. Int. Polym. Proc. 2008; 23: 412.

43. Acioli-Moura R, Sun XS. Polymer Engineering & Science, 2008; 48: 829.

44. Lee SY, Hanna MA. Polym. Compos. 2009; 30: 665.

45. Arroyo OH, Huneault MA, Favis BD, et al. Polym. Compos. 2010; 31: 114.

46. Cai J, Liu M, Wang L, et al. Carbohydr. Polym. 2011; 86: 941.

47. Shogren RL, Doane WM, Garlotta D, et al. Polym. Degrad. Stab. 2003; 79: 405.

48. Yew GH, Mohd Yusof AM, Mohd Ishak ZA, et al. Polym. Degrad. Stab. 2005; 90: 488.

49. Chen X, Wang L, Shi J, Polymers & Polymer Composites 2011; 19: 559.

50. Li G, Sarazin P, Orts WJ, et al. Chem. Phys. 2011; 212: 1147.

51. Gao H, Hu S, Su F, et al. Polym. Compos. 2011; 32: 2093.

52. Shi Q, Chen C, Gao L, et al. Polym. Degrad. Stab. 2011; 96: 175.

53. Shin BY, Jang SH, Kim BS. Polym. Eng. Sci. 2011; 51: 826.

54. Shogren RL, Selling G, Willett JL. J. Polym. Environ. 2011; 19: 329.

55. Silva KMD, Tarverdi K, Withnall R, et al. Plastics Rubber and Composites 2011; 40: 17.

56. Swierz-Motysia B, Jeziorska R, Szadkowska A, et al. Polimery 2011; 56: 271.

57. Zeng JB, Li KA, Du AK. RSC Advances, 2015; 5: 32546.

58. Wu XS. J. Polym. Environ. 2011; 19: 912.

59. Yokesahachart C, Yoksan R, Carbohydr. Polym. 2011; 83: 22.

60. Chabrat E, Abdillahi H, Rouilly A, et al. Industrial Crops and Products, 2012; 37: 238.

61. Garcia NL, Lamanna M, D'Accorso N, et al. Polym. Degrad. Stab. 2012; 97: 2021.

62. Liu J, Jiang H, Chen L, et al. J. Polym. Environ. 2012; 20: 810.

63. Ouyang C, Wang Y, Zhao N, et al. Polym. Bull. 2012; 68: 2009.

64. Phetwarotai W, Potiyaraj P, Aht-Ong D. J. Appl. Polym. Sci. 2012; 126: E162.

65. Favaro Ferrarezi MM, Taipina MDO, Escobar da Silva LC, et al. J. Polym. Environ. 2013; 21: 151.

66. Xue P, Wang K, Jia M, et al. Journal of Wuhan University of Technology-Materials Science Edition, 2013; 28: 157.

67. Li S, Xiong Z, Fei P, et al. J. Appl. Polym. Sci. 2013; 129: 3566.

68. Paglicawan MA, Basilia BA, Navarro MTV, et al. Journal of Biobased Materials and Bioenergy, 2013; 7: 102.

69. Shirai MA, Grossmann MVE, Mali S, et al. Polym. 2013; 92: 19.

70. Soares FC, Yamashita F, Mueller CMO, et al. Polym. Test. 2013; 32: 94.

71. Xiong Z, Li C, Ma S, et al. Carbohydr. Polym. 2013; 95: 77.

72. Xiong Z, Yang Y, Feng J, et al. Carbohydr. Polym. 2013; 92: 810.

73. Xiong Z, Zhang L, Ma S, et al. Carbohydr. Polym. 2013; 94: 235.

74. Zhang S, Feng X, Zhu S, et al. Mater. Lett. 2013; 98: 238.

75. Rizvi R, Cochrane B, Naguib H, et al. Journal of Cellular Plastics, 2011; 47: 283.

76. Boissard CI, Bourban PE, Plummer CJG, et al. Journal of Cellular Plastics, 2012; 48: 445.

77. Koh JJ, Zhang X, He C. Int. J. Biol. Macromol. 2018; 109: 99.

78. Graupner N, Herrmann AS, Müssig J. Composites Part A: Applied Science and Manufacturing, 2009; 40: 810.

79. Fischer H, Werwein E, Graupner N. J. Compos. Mater. 2012; 0021998311435676.

80. Faruk O, Bledzki AK, Fink HP, et al. Prog. Polym. Sci. 2012; 37: 1552.

81. Wahit MU, Akos NI, Laftah WA. Polym. Compos. 2012; 33: 1045.

82. Hu R, Lim JK. J. Compos. Mater. 2007; 41: 1655.

83. Ibrahim NA, Yunus WMZW, Othman M, et al. J. Reinf. Plast. Compos. 2011; 30: 381.

84. Jandas PJ, Mohanty S, Nayak SK, et al. Polym. Compos. 2011; 32: 1689.

85. Ma HW, Joo CW. J. Compos. Mater. 2011; 45: 1451.

86. Smitthipong W, Tantatherdtam R, Chollakup R. J. Thermoplast. Compos. Mater.2013.

87. Jiang A, Xi J, Wu H. J. Reinf. Plast. Compos. 2012; 31: 621.

88. Zou H, Wang L, Gan H, et al. Polym. Compos. 2012; 33: 1659.

89. Akos NI, Wahit MU, Mohamed R, et al. Polym. Compos. 2013; 34: 763.

90. Akos NI, Wahit MU, Mohamed R, et al. Compos. Interfaces, 2013.

91. Oksman K, Skrifvars M, Selin JF. Compos. Sci. Technol. 2003; 63: 1317.

92. Alimuzzaman S, Gong RH, Akonda M. Polym. Compos.2013.

93. Siengchin S, Pohl T, Medina L, et al. J. Reinf. Plast. Compos. 2013; 32: 23.

94. Foruzanmehr M, Vuillaume PY, Elkoun S, et al. Materials & Design, 2016; 106: 295.

95. Wu JH, Kuo MC, Chen CW, et al. J. Appl. Polym. Sci. 2013; 129: 3007.

96. Wang L, Tong Z, Ingram LO, et al. J. Polym. Environ. 2013: 1.

97. Goriparthi BK, Suman K, Rao NM. Composites Part A: Applied Science and Manufacturing, 2012; 43: 1800.

98. Zafar MT, Maiti SN, Ghosh AK. Fibers and Polymers, 2016; 17: 266.

99. Harada M, Iida K, Okamoto K, et al. Polymer Engineering & Science, 2008; 48: 1359.

100. Ren J, Yu T, Li H, et al. Polym. Compos. 2008; 29: 1145.

101. Wang L, Ma W, Gross RA, et al. Polym. Degrad. Stab. 1998; 59: 161.

102. Wu D, Lin D, Zhang J, et al. Macromol. Chem. Phys. 2011; 212: 613.

103. Takayama T, Todo M, Tsuji H. Journal of the Mechanical Behavior of Biomedical Materials, 2011; 4: 255.

104. Takayama T, Todo M, Arakawa K, et al. Nippon Kikai Gakkai Ronbunshu A Hen(Transactions of the Japan Society of Mechanical Engineers Part A)(Japan), 2006; 18: 173.

105. Semba T, Kitagawa K, Ishiaku US, et al. J. Appl. Polym. Sci. 2006; 101: 1816.

106. López-Rodríguez N, López-Arraiza A, Meaurio E, et al. Polymer Engineering & Science, 2006; 46: 1299.

107. Grijpma DW, Zondervan GJ, Pennings AJ. Polym. Bull. 1991; 25: 327.

108. Dunnen WFA, Schakenraad JM, Zondervan GJ, et al. Journal of Materials Science: Materials in Medicine, 1993; 4: 521.

109. Hiljanen-Vainio M, Varpomaa P, Seppälä J, et al. Macromol. Chem. Phys. 1996; 197: 1503.

110. Groot JH, Zijlstra FM, Kuipers HW, et al. Biomaterials, 1997; 18: 613.

111. Deng X, Zhu Z, Xiong C, et al. J. Polym. Sci., Part A: Polym. Chem. 1997; 35: 703.

112. Huang MH, Li S, Vert M. Polymer, 2004; 45: 8675.

113. Cohn D, Hotovely Salomon A. Biomaterials, 2005; 26: 2297.

114. Sarazin P, Li G, Orts WJ, et al. Polymer, 2008; 49: 599.

115. Ju D, Han L, Li F, et al. Polym. Compos. 2013.

116. Salehiyan R, Yussuf AA, Hanani NF, et al. J. Elastomers Plast. 2013.

117. Jiao M, Yang K, Cao J, et al. Journal of Macromolecular Science, Part B, 2013.

118. Chavalitpanya K, Phattanarudee S. Energy Procedia, 2013; 34: 542.

119. Gloria A, Bártolo PJ, Patrício T. Advanced Materials Research, 2013; 683: 168.

120. Salehiyan R, Hyun K. Korean J. Chem. Eng. 2013; 30: 1013.

121. Finotti PF, Costa LC, Chinelatto MA. Effect of the Chemical Structure of Compatibilizers on the Thermal, Mechanical and Morphological Properties of Immiscible PLA/PCL Blends, 2016.

122. Park JW, Doi Y, Iwata T. Biomacromolecules, 2004; 5: 1557.

123. Blümm E, Owen AJ. Polymer, 1995; 36: 4077.

124. Koyama N, Doi Y. Can. J. Microbiol. 1995; 41: 316.

125. Zhang L, Xiong C, Deng X. Polymer, 1996; 37: 235.

126. Koyama N, Doi Y. Polymer, 1997; 38: 1589.

127. Ohkoshi I, Abe H, Doi Y. Polymer, 2000; 41: 5985.

128. Ferreira BMP, Zavaglia CAC, Duek EAR. J. Appl. Polym. Sci. 2002; 86: 2898.

129. Focarete ML, Scandola M, Dobrzynski P, et al. Macromolecules, 2002; 35: 8472.

130. Vogel C, E. Wessel and H. W. Siesler, Biomacromolecules, 2007; 9: 523.

131. Vogel C, Siesler HW. Macromolecular Symposia, 2008; 265: 183.

132. Vogel C, Hoffmann GG, Siesler HW. Vib. Spectrosc, 2009; 49: 284.

133. El-Hadi AM. Polymer Engineering & Science, 2011; 51: 2191.

134. Zhang M, Thomas NL. Adv. Polym. Tech. 2011; 30: 67.

135. Abdelwahab MA, Flynn A, Chiou BS, et al. Polym. Degrad. Stab. 2012; 97: 1822.

136. Gerard T, Budtova T. Eur. Polym. J. 2012; 48: 1110.

137. Zhao H, Cui Z, Wang X, et al. Composites Part B: Engineering, 2013; 51: 79.

138. Bartczak Z, Galeski A, Kowalczuk M, et al. Eur. Polym. J. 2013.

139. Tri PN, Domenek S, Guinault A, et al. J. Appl. Polym. Sci. 2013; 129: 3355.

140. Baran A, Vrábel P, Olčák D, et al. J. Appl. Polym. Sci. 2018; 135.

141. Yeh JT, Yang MC, Wu CJ, et al. Polymer-Plastics Technology and Engineering, 2008; 47: 1289.

142. Shuai X, He Y, Asakawa N, et al. J. Appl. Polym. Sci. 2001; 81: 762.

143. Tsuji H, Muramatsu H. J. Appl. Polym. Sci. 2001; 81: 2151.

144. Jawalkar SS, Aminabhavi TM. Polymer, 2006; 47: 8061.

145. Tsuji H, Muramatsu H. Polym. Degrad. Stab. 2001; 71: 403.

146. Ke T, Sun X. J. Polym. Environ. 2003; 11: 7.

147. An Tran NH, Brünig H, Hinüber C, et al. Macromolecular Materials and Engineering, 2013; n/a.

148. Hu Y, Wang Q, Tang M. Carbohydr. Polym. 2013; 96: 384.




DOI: https://doi.org/10.24294/jpse.v1i3.723

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Journal of Polymer Science and Engineering

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This site is licensed under a Creative Commons Attribution 4.0 International License.