Exact analysis of MHD Walters’-B fluid flow with non-singular fractional derivatives of Caputo-Fabrizio in the presence of radiation and chemical reaction

Muhammad Asjad Imran, Maryam Aleem, M. Bilal Riaz

Article ID: 599
Vol 2, Issue 1, 2019

VIEWS - 5550 (Abstract)

Abstract


The present article reports the applications of Caputo-Fabrizio time-fractional derivatives. This article generalizes the idea of unsteady MHD free convective flow in a Walters.-B fluid with heat and mass transfer study over an exponential isothermal vertical plate embedded in a porous medium. The governing equations are converted into dimensionless form and extended to fractional model. The generalized Walters-B fluid model has been solved analytically using the Laplace transform technique. From the general solutions we reduce limiting solutions when to the similar motion for Newtonian fluid. The corresponding expressions for and Nusselt and Sherwood numbers are also assessed. Numerical results for velocity, temperature and concentration are demonstrated graphically for various factors of interest and discussed. As a result, we have plotted the influence of fractional parameter on fluid flow and drawn comparison between fractional Walters’-B and fractional Newtonian fluid and found that fractional Newtonian fluid is faster than fractional Walters’-B fluids.


Keywords


free convection; mass and heat transfer; chemical reaction; Caputo-Fabrizio time derivative; radiation; MHD

Full Text:

PDF


References


1. Oldham K, Spanier J. The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order. Elsevier; 1974.

2. Samko S, Kilbas AA, Marichev O. Fractional Integrals and Derivatives. Taylor & Francis; 1993.

3. Du M, Wang Z, Hu H. Measuring memory with the order of fractional derivative. Scientific Reports 2013; 3(1). doi: 10.1038/srep03431

4. Machado JT, Mainardi F, Kiryakova V. Fractional calculus: Quo vadimus? (Where are we going?). Fractional Calculus and Applied Analysis 2015; 18(2): 495–526. doi: 10.1515/fca-2015-0031

5. Tenreiro Machado JA, Silva MF, Barbosa RS, et al. Some applications of fractional calculus in engineering. Mathematical Problems in Engineering 2010; 2010: 1–34. doi: 10.1155/2010/639801

6. Area I, Djida JD, Losada J, et al. On fractional orthonormal polynomials of a discrete variable. Discrete Dynamics in Nature and Society 2015; 2015: 1–7. doi: 10.1155/2015/141325

7. Area I, Losada J, Manintchap A. On some fractional Pearson equations. Fractional Calculus and Applied Analysis 2015; 18(5): 1164–1178. doi: 10.1515/fca-2015-0067

8. Klimek M, Odzijewicz T, Malinowska AB. Variational methods for the fractional Sturm–Liouville problem. Journal of Mathematical Analysis and Applications 2014; 416(1): 402–426. doi: 10.1016/j.jmaa.2014.02.009

9. Herrmann R. Fractional Calculus: An Introduction for Physicists. World Scientific; 2014.

10. Hilfer R. Threefold introduction to fractional derivatives. In: Klages R, Radons G, Sokolov IM (editors). Anomalous Transport: Foundations and Applications. Wiley-VCH Verlag; 2008. pp. 17–73. doi: 10.1002/9783527622979.ch2

11. Caputo M, Fabrizio M. A new definition of fractional derivative without singular kernel. Progress in Fractional Differentiation & Applications 2015; 1(2): 73–85. doi: 10.12785/pfda/010201

12. Losada J, Nieto JJ. Properties of a new fractional derivative without singular kernel. Progress in Fractional Differentiation and Applications 2015; 1(2): 87–92. doi: 10.12785/pfda/010202

13. Abo-Eldahab EM, Aziz MAE. Hall and ion-slip effects on MHD free convective heat generating flow past a semi-infinite vertical flat plate. Physica Scripta 2000; 61(3): 344–348. doi: 10.1238/physica.regular.061a00344

14. Ibrahim FS, Hassanien IA, Bakr AA. Unsteady magnetohydrodynamic micropolar fluid flow and heat transfer over a vertical porous plate through a porous medium in the presence of thermal and mass diffusion with a constant heat source. Canadian Journal of Physics 2004; 82(10): 775–790. doi: 10.1139/p04-021

15. Chaudhary RC, Jain A. Combined heat and mass transfer effects on MHD free convection flow past an oscillating plate embedded in porous medium. Romanian Journal of Physics 2007; 52(5–7): 505–524.

16. Bég OA, Bakier AY, Prasad VR. Numerical study of free convection magnetohydrodynamic heat and mass transfer from a stretching surface to a saturated porous medium with Soret and Dufour effects. Computational Materials Science 2009; 46(1): 57–65. doi: 10.1016/j.commatsci.2009.02.004

17. Makinde OD. Similarity solution of hydromagnetic heat and mass transfer over a vertical plate with a convective surface boundary condition. International Journal of Physical Sciences 2010; 5(6): 700–710.

18. Seth GS, Ansari MdS, Nandkeolyar R. MHD natural convection flow with radiative heat transfer past an impulsively moving plate with ramped wall temperature. Heat and Mass Transfer 2010; 47(5): 551–561. doi: 10.1007/s00231-010-0740-1

19. Khan I, Fakhar K, Shafie S. Magnetohydrodynamic free convection flow past an oscillating plate embedded in a porous medium. Journal of the Physical Society of Japan 2011; 80(10): 104401. doi: 10.1143/jpsj.80.104401

20. Narahari M, Debnath L. Unsteady magnetohydrodynamic free convection flow past an accelerated vertical plate with constant heat flux and heat generation or absorption. ZAMM - Journal of Applied Mathematics and Mechanics 2012; 93(1): 38–49. doi: 10.1002/zamm.201200008

21. Deka RK, Paul A, Chaliha A. Transient free convection flow past an accelerated vertical cylinder in a rotating fluid. Ain Shams Engineering Journal 2014; 5(2): 505–513. doi: 10.1016/j.asej.2013.10.002

22. Balamurugan KS, Ramaprasad JL, Varma SVK. Unsteady MHD free convective flow past a moving vertical plate with time dependent suction and chemical reaction in a slip flow regime. Procedia Engineering 2015; 127: 516–523. doi: 10.1016/j.proeng.2015.11.338

23. Butt AS, Ali A. Entropy generation effects in a hydromagnetic free convection flow past a vertical oscillating plate. Journal of Applied Mechanics and Technical Physics 2016; 57(1): 27–37. doi: 10.1134/s0021894416010053

24. Cramer KR. New from Mcgraw‐Hill magnetofluid dynamics for engineers and applied physicists. Electrical Engineering in Japan 1973; 93(1): 142–142. doi: 10.1002/eej.4390930120

25. Beard DW, Walters K. Elastico-viscous boundary-layer flows I. Two-dimensional flow near a stagnation point. Mathematical Proceedings of the Cambridge Philosophical Society 1964; 60(3): 667–674. doi: 10.1017/s0305004100038147

26. Nandeppanavar MM, Abel MS, Tawade J. Heat transfer in a Walter’s liquid B fluid over an impermeable stretching sheet with non-uniform heat source/sink and elastic deformation. Communications in Nonlinear Science and Numerical Simulation 2010; 15(7): 1791–1802. doi: 10.1016/j.cnsns.2009.07.009

27. Chang TB, Mehmood A, Bég OA, et al. Numerical study of transient free convective mass transfer in a Walters-B viscoelastic flow with wall suction. Communications in Nonlinear Science and Numerical Simulation 2011; 16(1): 216–225. doi: 10.1016/j.cnsns.2010.02.018

28. Khan I, Ali F, Shafie S, et al. Unsteady free convection flow in a Walters-B fluid and heat transfer analysis. Bulletin of the Malaysian Mathematical Sciences Society 2014; 37(2): 437–448.

29. Hayat T, Asad S, Mustafa M, et al. Heat transfer analysis in the flow of Walters’ B fluid with a convective boundary condition. Chinese Physics B 2014; 23(8): 084701. doi: 10.1088/1674-1056/23/8/084701

30. Hayat T, Hutter K, Nadeem S, et al. Unsteady hydromagnetic rotating flow of a conducting second grade fluid. Journal of Applied Mathematics and Physics 2004; 55(4): 626–641. doi: 10.1007/s00033-004-1129-0

31. Siddheshwar PG, Mahabaleswar US. Effects of radiation and heat source on MHD flow of a viscoelastic liquid and heat transfer over a stretching sheet. International Journal of Non-Linear Mechanics 2005; 40(6): 807–820. doi: 10.1016/j.ijnonlinmec.2004.04.006

32. Ghasemi E, Bayat M, Bayat M. Viscoelastic MHD flow of Walters liquid B fluid and heat transfer over a non-isothermal stretching sheet. International Journal of Physical Sciences 2011; 6(21): 5022–5039. doi: 10.5897/IJPS11.793

33. Prakash O, Kumar D, Dwivedi YK. Heat transfer in MHD flow of dusty viscoelastic (Walters’ liquid model-B) stratified fluid in porous medium under variable viscosity. Pramana 2012; 79(6): 1457–1470. doi: 10.1007/s12043-012-0344-z

34. Balvinder P, Krishan D, Bansal AK. Hall current effect on viscoelastic (Walter’s liquid model-B) MHD oscillatory convective channel flow through a porous medium with heat radiation. Kragujevac Journal of Science 2014; (36): 19–32. doi: 10.5937/kgjsci1436019b

35. Ramesh K, Devakar M. Effect of Heat transfer on the peristaltic flow of Walters B fluid in a vertical channel with an external magnetic field. Journal of Aerospace Engineering 2016; 29(2): 04015050. doi: 10.1061/(ASCE)AS.1943-5525.0000541




DOI: https://doi.org/10.24294/jpse.v2i1.599

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Muhammad Asjad Imran, Maryam Aleem, M. Bilal Riaz

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This site is licensed under a Creative Commons Attribution 4.0 International License.