Sustainable membrane technology for water purification—Manufacturing, recycling and environmental impacts

Ayesha Kausar

Article ID: 5976
Vol 7, Issue 1, 2024

VIEWS - 3241 (Abstract) 2464 (PDF)

Abstract


Water pollution has become a serious threat to our ecosystem. Water contamination due to human, commercial, and industrial activities has negatively affected the whole world. Owing to the global demanding challenges of water pollution treatments and achieving sustainability, membrane technology has gained increasing research attention. Although numerous membrane materials have focused, the sustainable water purification membranes are most effective for environmental needs. In this regard sustainable, green, and recyclable polymeric and nanocomposite membranes have been developed. Materials fulfilling sustainable environmental demands usually include wide-ranging polyesters, polyamides, polysulfones, and recyclable/biodegradable petroleum polymers plus non-toxic solvents. Consequently, water purification membranes for nanofiltration, microfiltration, reverse osmosis, ultrafiltration, and related filtration processes have been designed. Sustainable polymer membranes for water purification have been manufactured using facile techniques. The resulting membranes have been tested for desalination, dye removal, ion separation, and antibacterial processes for wastewater. Environmental sustainability studies have also pointed towards desired life cycle assessment results for these water purification membranes. Recycling of water treatment membranes have been performed by three major processes mechanical recycling, chemical recycling, or thermal recycling. Moreover, use of sustainable membranes has caused positive environmental impacts for safe waste water treatment. Importantly, worth of sustainable water purification membranes has been analyzed for the environmentally friendly water purification applications. There is vast scope of developing and investigating water purification membranes using countless sustainable polymers, materials, and nanomaterials. Hence, value of sustainable membranes has been analyzed to meet the global demands and challenges to attain future clean water and ecosystem.


Keywords


sustainable; membrane technology; polymer; recycling; water purification

Full Text:

PDF


References


1. Kausar A, Ahmad I. Footsteps of graphene filled polymer nanocomposites towards efficient membranes—Present and future. Journal of Polymer Science and Engineering. 2024; 7(1): 4978. doi: 10.24294/jpse.v7i1.4978

2. Ribeiro JP, Sarinho L, Nunes MI. Application of life cycle assessment to Fenton processes in wastewater treatment – A review. Journal of Water Process Engineering. 2024; 57: 104692. doi: 10.1016/j.jwpe.2023.104692

3. Gowthaman NSK, Lim HN, Sreeraj TR, et al. Advantages of biopolymers over synthetic polymers. Biopolymers and their Industrial Applications. 2021: 351-372. doi: 10.1016/b978-0-12-819240-5.00015-8

4. Ramírez-Martínez M, Aristizábal SL, Szekely G, et al. Bio-based solvents for polyolefin dissolution and membrane fabrication: from plastic waste to value-added materials. Green Chemistry. 2023; 25(3): 966-977. doi: 10.1039/d2gc03181g

5. Yang C. Sustainable thin-film composite membranes for organic solvent nanofiltration. KAUST Research Repository; 2023.

6. Liang Y, Knauer KM. Trends and future outlooks in circularity of desalination membrane materials. Frontiers in Membrane Science and Technology. 2023; 2: 1169158.

7. Georgiev SV, Rizzoli SO. The long-loop recycling (LLR) of synaptic components as a question of economics. Molecular and Cellular Neuroscience. 2023; 126: 103862. doi: 10.1016/j.mcn.2023.103862

8. Noah NM. Current Status and Advancement of Nanomaterials within Polymeric Membranes for Water Purification. ACS Applied Nano Materials; 2023.

9. Baker RW. Membrane technology and applications. John Wiley & Sons; 2024.

10. Liao X, Chou S, Gu C, et al. Engineering omniphobic corrugated membranes for scaling mitigation in membrane distillation. Journal of Membrane Science. 2023; 665: 121130. doi: 10.1016/j.memsci.2022.121130

11. Van der Bruggen B. Microfiltration, ultrafiltration, nanofiltration, reverse osmosis, and forward osmosis. In: Fundamental Modelling of Membrane Systems. Elsevier; 2018.

12. Rahman IU, Mohammed HJ, Siddique MF, et al. Application of membrane technology in the treatment of waste liquid containing radioactive materials. Journal of Radioanalytical and Nuclear Chemistry. 2023; 1-14.

13. Ramachandran SK, Sathishkumar P. Membrane-based techniques for pollutants removal: An outlook on recent advancements. Current Opinion in Environmental Science & Health. 2023; 36: 100513. doi: 10.1016/j.coesh.2023.100513

14. Zhang H, Zheng Y, Zhou H, et al. Nanocellulose-intercalated MXene NF membrane with enhanced swelling resistance for highly efficient antibiotics separation. Separation and Purification Technology. 2023; 305: 122425. doi: 10.1016/j.seppur.2022.122425

15. Sazali N. A review of the application of carbon-based membranes to hydrogen separation. Journal of Materials Science. 2020; 55(25): 11052-11070. doi: 10.1007/s10853-020-04829-7

16. Peng Y, Li Y, Ban Y, Yang W. Two-dimensional metal—organic framework nanosheets for membrane‐based gas separation. Angewandte Chemie. 2017; 129(33): 9889-9893.

17. Yorgun MS, Balcioglu IA, Saygin O. Performance comparison of ultrafiltration, nanofiltration and reverse osmosis on whey treatment. Desalination. 2008; 229(1-3): 204-216. doi: 10.1016/j.desal.2007.09.008

18. Lin J, Lin F, Liu R, et al. Scalable fabrication of robust superhydrophobic membranes by one-step spray-coating for gravitational water-in-oil emulsion separation. Separation and Purification Technology. 2020; 231: 115898. doi: 10.1016/j.seppur.2019.115898

19. Zou D, Nunes SP, Vankelecom IFJ, et al. Recent advances in polymer membranes employing non-toxic solvents and materials. Green Chemistry. 2021; 23(24): 9815-9843. doi: 10.1039/d1gc03318b

20. Effendi SSW, Chiu CY, Chang YK, et al. Crosslinked on novel nanofibers with thermophilic carbonic anhydrase for carbon dioxide sequestration. International Journal of Biological Macromolecules. 2020; 152: 930-938. doi: 10.1016/j.ijbiomac.2019.11.234

21. Nguyen NV, Jeong J, Shin D, et al. Simultaneous Recovery of Gold and Iodine from the Waste Rinse Water of the Semiconductor Industry Using Activated Carbon. Materials Transactions. 2012; 53(4): 760-765. doi: 10.2320/matertrans.m2012009

22. León-Boigues L, Flores A, Gómez-Fatou MA, et al. PET/Graphene Nanocomposite Fibers Obtained by Dry-Jet Wet-Spinning for Conductive Textiles. Polymers. 2023; 15(5): 1245. doi: 10.3390/polym15051245

23. Li B, Yuan H, Zhang Y. Transparent PMMA-based nanocomposite using electrospun graphene-incorporated PA-6 nanofibers as the reinforcement. Composites Science and Technology. 2013; 89: 134-141. doi: 10.1016/j.compscitech.2013.09.022

24. Zhang X, Wang A, Zhou X, et al. Fabrication of aramid nanofiber-wrapped graphene fibers by coaxial spinning. Carbon. 2020; 165: 340-348. doi: 10.1016/j.carbon.2020.04.072

25. Ramazani S, Karimi M. Aligned poly(ε-caprolactone)/graphene oxide and reduced graphene oxide nanocomposite nanofibers: Morphological, mechanical and structural properties. Materials Science and Engineering: C. 2015; 56: 325-334. doi: 10.1016/j.msec.2015.06.045

26. Bagheri M, Mahmoodzadeh A. Polycaprolactone/Graphene Nanocomposites: Synthesis, Characterization and Mechanical Properties of Electrospun Nanofibers. Journal of Inorganic and Organometallic Polymers and Materials. 2019; 30(5): 1566-1577. doi: 10.1007/s10904-019-01340-8

27. Zhan S, Li S, Zhan X, et al. Green lignin‐based polyester nanofiltration membranes with ethanol and chlorine resistance. Journal of Applied Polymer Science. 2021; 139(1). doi: 10.1002/app.51427

28. Hardian R, Cywar RM, Chen EYX, et al. Sustainable nanofiltration membranes based on biosourced fully recyclable polyesters and green solvents. Journal of Membrane Science Letters. 2022; 2(1): 100016. doi: 10.1016/j.memlet.2022.100016

29. Mallakpour S, Dinari M. High performance polymers in ionic liquid: a review on prospects for green polymer chemistry. Part II: polyimides and polyesters. Iranian Polymer Journal. 2011; 20: 259-279.

30. Ma B, Ulbricht M, Hu C, et al. Membrane Life Cycle Management: An Exciting Opportunity for Advancing the Sustainability Features of Membrane Separations. Environmental Science & Technology. 2023; 57(8): 3013-3020. doi: 10.1021/acs.est.2c09257

31. Park S, Patel R, Woo YC. Polyester-based thin-film composite membranes for nanofiltration of saline water: A review. Desalination. 2024; 572: 117138. doi: 10.1016/j.desal.2023.117138

32. Donnakatte Neelalochana V, Tomasino E, Di Maggio R, et al. Anion Exchange Membranes Based on Chemical Modification of Recycled PET Bottles. ACS Applied Polymer Materials. 2023; 5(9): 7548-7561. doi: 10.1021/acsapm.3c01391

33. Fan K, Mai Z, Liu Y, et al. Fabrication of Dense Polyester Nanofiltration Membranes with Superior Fouling and Chlorine Resistance: Effect of Polyol Monomer Properties and Underlying Mechanisms. ACS ES&T Engineering. 2023; 3(11): 1738-1747. doi: 10.1021/acsestengg.3c00203

34. Hammer V, Vanneste J, Vuono DC, et al. Membrane Contactors as a Cost-Effective Cyanide Recovery Technology for Sustainable Gold Mining. ACS ES&T Water. 2023; 3(7): 1935-1944. doi: 10.1021/acsestwater.3c00026

35. Guerra FB, Cavalcante RM, Young AF. Green Propylene and Polypropylene Production from Glycerol: Process Simulation and Economic Evaluation. ACS Sustainable Chemistry & Engineering. 2023; 11(7): 2752-2763. doi: 10.1021/acssuschemeng.2c05371

36. Zhang R, Liu Y, He M, et al. Antifouling membranes for sustainable water purification: strategies and mechanisms. Chemical Society Reviews. 2016; 45(21): 5888-5924. doi: 10.1039/c5cs00579e

37. Yang Y, Ali N, Bilal M, et al. Robust membranes with tunable functionalities for sustainable oil/water separation. Journal of Molecular Liquids. 2021; 321: 114701. doi: 10.1016/j.molliq.2020.114701

38. Baig U, Faizan M, Sajid Mohd. Multifunctional membranes with super-wetting characteristics for oil-water separation and removal of hazardous environmental pollutants from water: A review. Advances in Colloid and Interface Science. 2020; 285: 102276. doi: 10.1016/j.cis.2020.102276

39. Sharma PR, Sharma SK, Lindström T, et al. Nanocellulose‐Enabled Membranes for Water Purification: Perspectives. Advanced Sustainable Systems. 2020; 4(5). doi: 10.1002/adsu.201900114

40. Yuan Z, Ke Z, Qiu Y, et al. Prewetting Polypropylene-Wood Pulp Fiber Composite Nonwoven Fabric for Oil–Water Separation. ACS Applied Materials & Interfaces. 2020; 12(41): 46923-46932. doi: 10.1021/acsami.0c12612

41. Mamah SC, Goh PS, Ismail AF, et al. Recent development in modification of polysulfone membrane for water treatment application. Journal of Water Process Engineering. 2021; 40: 101835. doi: 10.1016/j.jwpe.2020.101835

42. Jyothi MS, Yadav S, Balakrishna G. Effective recovery of acids from egg waste incorporated PSf membranes: A step towards sustainable development. Journal of Membrane Science. 2018; 549: 227-235. doi: 10.1016/j.memsci.2017.12.013

43. Fan H, Gao A, Zhang G, et al. A design of bifunctional photothermal layer on polysulfone membrane with enclosed cellular-like structure for efficient solar steam generation. Chemical Engineering Journal. 2021; 415: 128798. doi: 10.1016/j.cej.2021.128798

44. Huang S, Wu MB, Zhu CY, et al. Polyamide Nanofiltration Membranes Incorporated with Cellulose Nanocrystals for Enhanced Water Flux and Chlorine Resistance. ACS Sustainable Chemistry & Engineering. Published online June 28, 2019. doi: 10.1021/acssuschemeng.9b01651

45. Ong C, Falca G, Huang T, et al. Green Synthesis of Thin-Film Composite Membranes for Organic Solvent Nanofiltration. ACS Sustainable Chemistry & Engineering. 2020; 8(31): 11541-11548. doi: 10.1021/acssuschemeng.0c02320

46. Sukitpaneenit P, Chung TS. High Performance Thin-Film Composite Forward Osmosis Hollow Fiber Membranes with Macrovoid-Free and Highly Porous Structure for Sustainable Water Production. Environmental Science & Technology. 2012; 46(13): 7358-7365. doi: 10.1021/es301559z

47. Han J, Meng S, Dong Y, et al. Capturing hormones and bisphenol A from water via sustained hydrogen bond driven sorption in polyamide microfiltration membranes. Water Research. 2013; 47(1): 197-208. doi: 10.1016/j.watres.2012.09.055

48. Zhao A, Zhang N, Li Q, et al. Incorporation of Silver-Embedded Carbon Nanotubes Coated with Tannic Acid into Polyamide Reverse Osmosis Membranes toward High Permeability, Antifouling, and Antibacterial Properties. ACS Sustainable Chemistry & Engineering. 2021; 9(34): 11388-11402. doi: 10.1021/acssuschemeng.1c03313

49. Nunes SP, Culfaz-Emecen PZ, Ramon GZ, et al. Thinking the future of membranes: Perspectives for advanced and new membrane materials and manufacturing processes. Journal of Membrane Science. 2020; 598: 117761. doi: 10.1016/j.memsci.2019.117761

50. Li NN, Fane AG, Ho WW, Matsuura T. Advanced membrane technology and applications. John Wiley & Sons; 2011.

51. Beuscher U, Kappert EJ, Wijmans JG. Membrane research beyond materials science. Journal of Membrane Science. 2022; 643: 119902. doi: 10.1016/j.memsci.2021.119902

52. Lawler W, Bradford-Hartke Z, Cran MJ, et al. Towards new opportunities for reuse, recycling and disposal of used reverse osmosis membranes. Desalination. 2012; 299: 103-112. doi: 10.1016/j.desal.2012.05.030

53. Lawler W, Alvarez-Gaitan J, Leslie G, et al. Comparative life cycle assessment of end-of-life options for reverse osmosis membranes. Desalination. 2015; 357: 45-54. doi: 10.1016/j.desal.2014.10.013

54. Esfandian H, Motevalian N, Shekarian E, et al. Chemical Recycling of Plastic Waste. Solid Waste Management. Published online September 5, 2023: 140-157. doi: 10.1201/9781003189602-8

55. Gong F, Li H, Yuan X, et al. Recycling Polymeric Solid Wastes for Energy‐Efficient Water Purification, Organic Distillation, and Oil Spill Cleanup. Small. 2021; 17(46). doi: 10.1002/smll.202102459

56. Saravanan A, Senthil Kumar P, Jeevanantham S, et al. Effective water/wastewater treatment methodologies for toxic pollutants removal: Processes and applications towards sustainable development. Chemosphere. 2021; 280: 130595. doi: 10.1016/j.chemosphere.2021.130595

57. Saucedo DCL, Nuñez RG, Lepe MOV, Rodrigue D. Polymer Processing Technology to Recycle Polymer Blends Check for updates. In: Recycled Polymer Blends and Composites: Processing, Properties, and Applications. Springer; 2023. p. 111.

58. Saucedo DCL, Nuñez RG, Lepe MOV, Rodrigue D. Polymer Processing Technology to Recycle Polymer Blends. In: Recycled Polymer Blends and Composites: Processing, Properties, and Applications. Springer; 2023. pp. 111-132.

59. Sonune A, Ghate R. Developments in wastewater treatment methods. Desalination. 2004; 167: 55-63. doi: 10.1016/j.desal.2004.06.113

60. Lamtai A, Elkoun S, Robert M, et al. Mechanical Recycling of Thermoplastics: A Review of Key Issues. Waste. 2023; 1(4): 860-883. doi: 10.3390/waste1040050

61. Ragaert K, Delva L, Van Geem K. Mechanical and chemical recycling of solid plastic waste. Waste Management. 2017; 69: 24-58. doi: 10.1016/j.wasman.2017.07.044

62. Al-Salem SM, Lettieri P, Baeyens J. Recycling and recovery routes of plastic solid waste (PSW): A review. Waste Management. 2009; 29(10): 2625-2643. doi: 10.1016/j.wasman.2009.06.004

63. Pardeshi S, Sharma R, Shanker R, et al. Mechanical recycling scenarios in India through the lens of plastic circular economy. Journal of Material Cycles and Waste Management. 2023; 25(6): 3425-3439. doi: 10.1007/s10163-023-01768-8

64. Kant G, Patle DS, Srivastava S, Pandey A. Waste plastic to fuel: properties, combustion characteristics and emission profile. In: Renewable Diesel. Elsevier; 2024.

65. Prince C, Cran M, Le-Clech P, et al. Reuse and recycling of used desalination membranes. In: Proceedings of OzWater 2011.

66. Lim J, Ahn Y, Kim J. Optimal sorting and recycling of plastic waste as a renewable energy resource considering economic feasibility and environmental pollution. Process Safety and Environmental Protection. 2023; 169: 685-696. doi: 10.1016/j.psep.2022.11.027

67. Roosen M, Mys N, Kusenberg M, et al. Detailed Analysis of the Composition of Selected Plastic Packaging Waste Products and Its Implications for Mechanical and Thermochemical Recycling. Environmental Science & Technology. 2020; 54(20): 13282-13293. doi: 10.1021/acs.est.0c03371

68. Soroudi A, Jakubowicz I. Recycling of bioplastics, their blends and biocomposites: A review. European Polymer Journal. 2013; 49(10): 2839-2858. doi: 10.1016/j.eurpolymj.2013.07.025

69. Landaburu-Aguirre J, García-Pacheco R, Molina S, et al. Fouling prevention, preparing for re-use and membrane recycling. Towards circular economy in RO desalination. Desalination. 2016; 393: 16-30. doi: 10.1016/j.desal.2016.04.002

70. Arostegui A, Sarrionandia M, Aurrekoetxea J, et al. Effect of dissolution-based recycling on the degradation and the mechanical properties of acrylonitrile–butadiene–styrene copolymer. Polymer Degradation and Stability. 2006; 91(11): 2768-2774. doi: 10.1016/j.polymdegradstab.2006.03.019

71. Rahimi A, García JM. Chemical recycling of waste plastics for new materials production. Nature Reviews Chemistry. 2017; 1(6). doi: 10.1038/s41570-017-0046

72. Vasudeo RA, Abitha VK, Vinayak K, et al. Sustainable Development Through Feedstock Recycling of Plastic Wastes. Macromolecular Symposia. 2016; 362(1): 39-51. doi: 10.1002/masy.201500107

73. Lee A, Liew MS. Tertiary recycling of plastics waste: an analysis of feedstock, chemical and biological degradation methods. Journal of Material Cycles and Waste Management. 2020; 23(1): 32-43. doi: 10.1007/s10163-020-01106-2

74. Lange JP. Towards circular carbo-chemicals – the metamorphosis of petrochemicals. Energy & Environmental Science. 2021; 14(8): 4358-4376. doi: 10.1039/d1ee00532d

75. Dogu O, Pelucchi M, Van de Vijver R, et al. The chemistry of chemical recycling of solid plastic waste via pyrolysis and gasification: State-of-the-art, challenges, and future directions. Progress in Energy and Combustion Science. 2021; 84: 100901. doi: 10.1016/j.pecs.2020.100901

76. Thunman H, Berdugo Vilches T, Seemann M, et al. Circular use of plastics-transformation of existing petrochemical clusters into thermochemical recycling plants with 100% plastics recovery. Sustainable Materials and Technologies. 2019; 22: e00124. doi: 10.1016/j.susmat.2019.e00124

77. Nanda S, Berruti F. Thermochemical conversion of plastic waste to fuels: a review. Environmental Chemistry Letters. 2020; 19(1): 123-148. doi: 10.1007/s10311-020-01094-7

78. Wong SL, Ngadi N, Abdullah TAT, et al. Current state and future prospects of plastic waste as source of fuel: A review. Renewable and Sustainable Energy Reviews. 2015; 50: 1167-1180. doi: 10.1016/j.rser.2015.04.063

79. Saleem J, Adil Riaz M, Gordon M. Oil sorbents from plastic wastes and polymers: A review. Journal of Hazardous Materials. 2018; 341: 424-437. doi: 10.1016/j.jhazmat.2017.07.072

80. Li X, Peng Y, Deng Y, et al. Recycling and Reutilizing Polymer Waste via Electrospun Micro/Nanofibers: A Review. Nanomaterials. 2022; 12(10): 1663. doi: 10.3390/nano12101663




DOI: https://doi.org/10.24294/jpse.v7i1.5976

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Ayesha Kausar

License URL: https://creativecommons.org/licenses/by/4.0/

This site is licensed under a Creative Commons Attribution 4.0 International License.