The potential of DNA from industrial vegetables byproducts for the preparation of sustainable materials
Vol 7, Issue 1, 2024
VIEWS - 1164 (Abstract)
Abstract
Keywords
Full Text:
PDFReferences
1. Fan X, Gao Y, He W, et al. Production of nano bacterial cellulose from beverage industrial waste of citrus peel and pomace using Komagataeibacter xylinus. Carbohydrate Polymers. 2016, 151: 1068-1072. doi: 10.1016/j.carbpol.2016.06.062
2. Esparza I, Jiménez-Moreno N, Bimbela F, et al. Fruit and vegetable waste management: Conventional and emerging approaches. Journal of Environmental Management. 2020, 265: 110510. doi: 10.1016/j.jenvman.2020.110510
3. Kowalska H, Czajkowska K, Cichowska J, et al. What’s new in biopotential of fruit and vegetable by-products applied in the food processing industry. Trends in Food Science & Technology. 2017, 67: 150-159. doi: 10.1016/j.tifs.2017.06.016
4. Slack JMW. Molecular Biology of the Cell. In: Principles of Tissue Engineering, 4th ed. Elsevier Academic Press Inc.; 2014. pp. 127-145.
5. Zhang Y, Tu J, Wang D, et al. Programmable and Multifunctional DNA‐Based Materials for Biomedical Applications. Advanced Materials. 2018, 30(24). doi: 10.1002/adma.201703658
6. Gordon S. Genomics and World Health. Trans R Soc Trop Med Hyg. 2002, 96: 669.
7. Peng S, Derrien TL, Cui J, et al. From cells to DNA materials. Materials Today. 2012, 15(5): 190-194.
8. Jayme CC, de Paula LB, Rezende N, et al. DNA polymeric films as a support for cell growth as a new material for regenerative medicine: Compatibility and applicability. Experimental Cell Research. 2017, 360(2): 404-412. doi: 10.1016/j.yexcr.2017.09.033
9. Chopade P, Dugasani SR, Jeon S, et al. Enhanced functionalities of DNA thin films by facile conjugation with conducting polymers. Current Applied Physics. 2020, 20(1): 161-166. doi: 10.1016/j.cap.2019.10.019
10. Vellampatti S, Reddeppa M, Dugasani SR, et al. High performance UV photodetectors using Nd3+ and Er3+ single- and co-doped DNA thin films. Biosensors and Bioelectronics. 2019, 126: 44-50. doi: 10.1016/j.bios.2018.10.042
11. Chen K, Lu Z, Ai N, et al. Fabrication and performance of anode-supported YSZ films by slurry spin coating. Solid State Ionics. 2007, 177(39-40): 3455-3460. doi: 10.1016/j.ssi.2006.10.003
12. Ishizuka N, Hashimoto Y, Matsuo Y, et al. Highly expansive DNA hydrogel films prepared with photocrosslinkable poly(vinyl alcohol). Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2006, 284-285: 440-443. doi: 10.1016/j.colsurfa.2005.11.027
13. Valle-Orero J, Garden JL, Richard J, et al. Calorimetric study of melted DNA glass. In: Proceedings of the AIP Conference. 2013, 1518: 766-771. doi: 10.1063/1.4794676
14. Nizioł J, Fiedor J, Pagacz J, et al. DNA-hexadecyltrimethyl ammonium chloride complex with enhanced thermostability as promising electronic and optoelectronic material. Journal of Materials Science: Materials in Electronics. 2016, 28(1): 259-268. doi: 10.1007/s10854-016-5519-9
15. Citrus: World Markets and Trade. United States Department of Agriculture Foreign Agricultural Service. Available online: https://apps.fas.usda.gov/psdonline/circulars/citrus.pdf (accessed on 9 January 2024).
16. Markets and trade. Available online: https://www.fao.org/economic/est/est-commodities/oilcrops/bananas/bananas/en/ (accessed on 9 January 2024).
17. Nelson DL, Cox MM. Lehninger Principles of Biochemistry, 5th ed. New York: W.H. Freeman; 2008.
18. Dovbeshko GI, Gridina NY, Kruglova EB, et al. FTIR spectroscopy studies of nucleic acid damage. Talanta. 2000, 53(1): 233-246.
19. Watson SMD, Mohamed HDA, Horrocks BR, et al. Electrically conductive magnetic nanowires using an electrochemical DNA-templating route. Nanoscale. 2013, 5(12): 5349. doi: 10.1039/c3nr00716b
20. Johnson IM, Prakash H, Prathiba J, et al. Spectral Analysis of Naturally Occurring Methylxanthines (Theophylline, Theobromine and Caffeine) Binding with DNA. Tajmir-Riahi HA, ed. PLoS ONE. 2012, 7(12): e50019. doi: 10.1371/journal.pone.0050019
21. Mikulecky PJ, Feig AL. Heat capacity changes associated with nucleic acid folding. Biopolymers. 2006, 82(1): 38-58. doi: 10.1002/bip.20457
22. Gill P, Moghadam TT, Ranjbar B. Differential scanning calorimetry techniques: Applications in biology and nanoscience. Journal of Biomolecular Techniques. 2010, 21(4): 167-193.
23. Tomé LC, Pinto RJB, Trovatti E, et al. Transparent bionanocomposites with improved properties prepared from acetylated bacterial cellulose and poly(lactic acid) through a simple approach. Green Chemistry. 2011, 13(2): 419. doi: 10.1039/c0gc00545b
24. Grande R, Trovatti E, Pimenta MTB, et al. Microfibrillated Cellulose from Sugarcane Bagasse as a Biorefinery Product for Ethanol Production. Journal of Renewable Materials. 2018, 6(2): 195-202. doi: 10.7569/jrm.2018.634109
25. Trovatti E, Fernandes SCM, Rubatat L, et al. Pullulan–nanofibrillated cellulose composite films with improved thermal and mechanical properties. Composites Science and Technology. 2012, 72(13): 1556-1561. doi: 10.1016/j.compscitech.2012.06.003
26. Alves ACL, Grande R, Carvalho AJF. Thermal and Mechanical Properties of Thermoplastic Starch and Poly(Vinyl Alcohol-Co-Ethylene) Blends. Journal of Renewable Materials. 2019, 7(3): 245-252. doi: 10.32604/jrm.2019.00833
DOI: https://doi.org/10.24294/jpse.v7i1.5132
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Tatiane Zucchini de Souza, Priscila Nishizaki Borba, Bruna Fernandes Antunes, Deliane da Silva Cabral, Antonio José Felix Carvalho, Eliane Trovatti
License URL: https://creativecommons.org/licenses/by/4.0/
This site is licensed under a Creative Commons Attribution 4.0 International License.