Footsteps of graphene filled polymer nanocomposites towards efficient membranes—Present and future

Ayesha Kausar, Ishaq Ahmad

Article ID: 4978
Vol 7, Issue 1, 2024

VIEWS - 220 (Abstract) 132 (PDF)

Abstract


Due to rising global environmental challenges, air/water pollution treatment technologies, especially membrane techniques, have been focused on. In this context, air or purification membranes have been considered effective for environmental remediation. In the field of polymeric membranes, high-performance polymer/graphene nanocomposite membranes have gained increasing research attention. The polymer/graphene nanomaterials exposed several potential benefits when processed as membranes. This review explains the utilization of polymer and graphene-derived nanocomposites towards membrane formation and water or gas separation or decontamination properties. Here, different membrane designs have been developed depending upon the polymer types (poly(vinyl alcohol), poly(vinyl chloride), poly(dimethyl siloxane), polysulfone, poly(methyl methacrylate), etc.) and graphene functionalities. Including graphene in polymers influences membrane microstructure, physical features, molecular permeability or selectivity, and separations. Polysulfone/graphene oxide nanocomposite membranes have been found to be most efficient with an enhanced rejection rate of 90%–95%, a high water flux >180 L/m2/h, and a desirable water contact angle for water purification purposes. For gas separation membranes, efficient membranes have been reported as polysulfone/graphene oxide and poly(dimethyl siloxane)/graphene oxide nanocomposites. In these membranes, N2, CO2, and other gases permeability has been found to be higher than even >99.9%. Similarly, higher selectivity values for gases like CO2/CH4 have been observed. Thus, high-performance graphene-based nanocomposite membranes possess high potential to overcome the challenges related to water or gas molecular separations.


Keywords


graphene; nanocomposite; membrane; water purification; gas separation

Full Text:

PDF


References


1. Gkotsis P, Kougias P, Mitrakas M, et al. Biogas upgrading technologies – Recent advances in membrane-based processes. International Journal of Hydrogen Energy. 2023; 48(10): 3965-3993. doi: 10.1016/j.ijhydene.2022.10.228

2. Wang T, Zeng S, Gu Z. Crown Ether Nanopores in Graphene Membranes for Highly Efficient CO2/CH4 and CO2/CO Separation: A Theoretical Study. ACS Applied Nano Materials. 2023; 6(13): 12372-12380. doi: 10.1021/acsanm.3c02075

3. Krishnan MR, Alsharaeh EH. High-performance functional materials based on polymer nanocomposites—A review. Journal of Polymer Science and Engineering. 2023; 6(1): 3292. doi: 10.24294/jpse.v6i1.3292

4. Kausar A. Advances in Polymer/Fullerene Nanocomposite: A Review on Essential Features and Applications. Polymer-Plastics Technology and Engineering. 2016; 56(6): 594-605. doi: 10.1080/03602559.2016.1233278

5. Su J, Wei Y, Li H. Preparation of defect free TFC FO membranes using robust and highly porous ceramic substrate. Journal of Polymer Science and Engineering. 2018; 1(4). doi: 10.24294/jpse.v1i4.413

6. Yang E, Goh K, Chuah CY, et al. Asymmetric mixed-matrix membranes incorporated with nitrogen-doped graphene nanosheets for highly selective gas separation. Journal of Membrane Science. 2020; 615: 118293. doi: 10.1016/j.memsci.2020.118293

7. Nauman Javed RM, Al-Othman A, Tawalbeh M, et al. Recent developments in graphene and graphene oxide materials for polymer electrolyte membrane fuel cells applications. Renewable and Sustainable Energy Reviews. 2022; 168: 112836. doi: 10.1016/j.rser.2022.112836

8. Chumakova NA, Kalai T, Rebrikova AT, et al. Novel Orientation-Sensitive Spin Probes for Graphene Oxide Membranes Study. Membranes. 2022; 12(12): 1241. doi: 10.3390/membranes12121241

9. Lee J, Park CY, Kong CI, et al. Ultrathin Water-Cast Polymer Membranes for Hydrogen Purification. ACS Applied Materials & Interfaces. 2022; 14(5): 7292-7300. doi: 10.1021/acsami.1c21780

10. Mohsenpour S, Leaper S, Shokri J, et al. Effect of graphene oxide in the formation of polymeric asymmetric membranes via phase inversion. Journal of Membrane Science. 2022; 641: 119924. doi: 10.1016/j.memsci.2021.119924

11. He X, Ou D, Wu S, et al. A mini review on factors affecting network in thermally enhanced polymer composites: filler content, shape, size, and tailoring methods. Advanced Composites and Hybrid Materials. 2021; 5(1): 21-38. doi: 10.1007/s42114-021-00321-1

12. Fatemi SM, Fatemi SJ, Abbasi Z. Gas separation using graphene nanosheet: insights from theory and simulation. Journal of Molecular Modeling. 2020; 26(11). doi: 10.1007/s00894-020-04581-4

13. Sharma S, Verma A, Rangappa SM, et al. Recent progressive developments in conductive-fillers based polymer nanocomposites (CFPNC’s) and conducting polymeric nanocomposites (CPNC’s) for multifaceted sensing applications. Journal of Materials Research and Technology. 2023; 26: 5921-5974. doi: 10.1016/j.jmrt.2023.08.300

14. Kausar A. Nanoporous graphene in polymeric nanocomposite membranes for gas separation and water purification—standings and headways. Journal of Macromolecular Science, Part A. 2023; 60(2): 81-91. doi: 10.1080/10601325.2023.2177170

15. Kausar A. Poly(methyl methacrylate) nanocomposite reinforced with graphene, graphene oxide, and graphite: a review. Polymer-Plastics Technology and Materials. 2019; 58(8): 821-842. doi: 10.1080/25740881.2018.1563112

16. Kausar A. Applications of polymer/graphene nanocomposite membranes: a review. Materials Research Innovations. 2018; 23(5): 276-287. doi: 10.1080/14328917.2018.1456636

17. Kumar SR, Wang JJ, Wu YS, et al. Synergistic role of graphene oxide-magnetite nanofillers contribution on ionic conductivity and permeability for polybenzimidazole membrane electrolytes. Journal of Power Sources. 2020; 445: 227293. doi: 10.1016/j.jpowsour.2019.227293

18. Anegbe B, Ifijen IH, Maliki M, et al. Graphene oxide synthesis and applications in emerging contaminant removal: a comprehensive review. Environmental Sciences Europe. 2024; 36(1). doi: 10.1186/s12302-023-00814-4

19. Li Y, Lin Z, He X. New nonporous fillers-based hybrid membranes for gas separations and water treatment process. Current Trends and Future Developments on (Bio-) Membranes. Published online 2024: 53-105. doi: 10.1016/b978-0-323-99311-1.00002-7

20. Gupta S, Singh A, Sharma T, et al. Applications of ultrafiltration, nanofiltration, and reverse osmosis in pharmaceutical wastewater treatment. Development in Wastewater Treatment Research and Processes. Published online 2024: 33-49. doi: 10.1016/b978-0-323-99278-7.00017-1

21. Jalali SHS. Investigation of nanofiltration systems efficiency for removal of chromium and copper from groundwater resources. Environmental Quality Management. Published online January 9, 2024. doi: 10.1002/tqem.22178

22. Ribeiro Pinela S, Larasati A, Meulepas RJW, et al. Ultrafiltration (UF) and biological oxygen-dosed activated carbon (BODAC) filtration to prevent fouling of reversed osmosis (RO) membranes: A mass balance analysis. Journal of Water Process Engineering. 2024; 57: 104648. doi: 10.1016/j.jwpe.2023.104648

23. Rana K, Kaur H, Singh N, et al. Graphene-based materials: Unravelling its impact in wastewater treatment for sustainable environments. Next Materials. 2024; 3: 100107. doi: 10.1016/j.nxmate.2024.100107

24. Nwosu CN, Iliut M, Vijayaraghavan A. Graphene and water-based elastomer nanocomposites – a review. Nanoscale. 2021; 13(21): 9505-9540. doi: 10.1039/d1nr01324f

25. Lawal AT. Recent progress in graphene based polymer nanocomposites. Cogent Chemistry. 2020; 6(1): 1833476. doi: 10.1080/23312009.2020.1833476

26. Raza A, Hassan JZ, Mahmood A, et al. Recent advances in membrane-enabled water desalination by 2D frameworks: Graphene and beyond. Desalination. 2022; 531: 115684. doi: 10.1016/j.desal.2022.115684

27. Zhang W, Xu H, Xie F, et al. General synthesis of ultrafine metal oxide/reduced graphene oxide nanocomposites for ultrahigh-flux nanofiltration membrane. Nature Communications. 2022; 13(1). doi: 10.1038/s41467-022-28180-4

28. Lecaros RLG, Matira AR, Tayo LL, et al. Homostructured graphene oxide-graphene quantum dots nanocomposite-based membranes with tunable interlayer spacing for the purification of butanol. Separation and Purification Technology. 2022; 283: 120166. doi: 10.1016/j.seppur.2021.120166

29. Rehman F, Memon FH, Bhatti Z, et al. Graphene-based composite membranes for isotope separation: challenges and opportunities. Reviews in Inorganic Chemistry. 2021; 42(4): 327-336. doi: 10.1515/revic-2021-0035

30. You X, Zhang Q, Yang J, et al. Review on 3D-printed graphene-reinforced composites for structural applications. Composites Part A: Applied Science and Manufacturing. 2023; 167: 107420. doi: 10.1016/j.compositesa.2022.107420

31. Berger C, Song Z, Li X, et al. Electronic Confinement and Coherence in Patterned Epitaxial Graphene. Science. 2006; 312(5777): 1191-1196. doi: 10.1126/science.1125925

32. Yu W, Gong K, Li Y, et al. Flexible 2D Materials beyond Graphene: Synthesis, Properties, and Applications. Small. 2022; 18(14). doi: 10.1002/smll.202105383

33. Narayanam PK, Botcha VD, Ghosh M, et al. Growth and photocatalytic behavior of transparent reduced GO–ZnO nanocomposite sheets. Nanotechnology. 2019; 30(48): 485601. doi: 10.1088/1361-6528/ab3ced

34. Shen X, Zeng X, Dang C. Graphene Composites. Handbook of Graphene. Published online June 17, 2019: 1-25. doi: 10.1002/9781119468455.ch53

35. Zandiatashbar A, Lee GH, An SJ, et al. Effect of defects on the intrinsic strength and stiffness of graphene. Nature Communications. 2014; 5(1). doi: 10.1038/ncomms4186

36. Qin H, Chen Y, Wu Y, et al. Defect-Engineered Thermal Transport in Wrinkled Graphene: A Comprehensive Molecular Dynamics Study. The Journal of Physical Chemistry C. 2022; 126(12): 5759-5766. doi: 10.1021/acs.jpcc.2c00324

37. Yu W, Sisi L, Haiyan Y, et al. Progress in the functional modification of graphene/graphene oxide: a review. RSC Advances. 2020; 10(26): 15328-15345. doi: 10.1039/d0ra01068e

38. Sinha A, So H. Structural Effects of Crumpled Graphene and Recent Developments in Comprehensive Sensor Applications: A Review. Small Structures. 2023; 4(10). doi: 10.1002/sstr.202300084

39. Rahman M, Islam KS, Dip TM, et al. A review on nanomaterial-based additive manufacturing: dynamics in properties, prospects, and challenges. Progress in Additive Manufacturing. Published online October 14, 2023. doi: 10.1007/s40964-023-00514-8

40. Lawal AT. Graphene-based nano composites and their applications. A review. Biosensors and Bioelectronics. 2019; 141: 111384. doi: 10.1016/j.bios.2019.111384

41. Kononova S, Gubanova G, Korytkova E, et al. Polymer Nanocomposite Membranes. Applied Sciences. 2018; 8(7): 1181. doi: 10.3390/app8071181

42. Mendes-Felipe C, Veloso-Fernández A, Vilas-Vilela JL, et al. Hybrid Organic–Inorganic Membranes for Photocatalytic Water Remediation. Catalysts. 2022; 12(2): 180. doi: 10.3390/catal12020180

43. Mohamed A, Yousef S, Tonkonogovas A, et al. High performance of PES-GNs MMMs for gas separation and selectivity. Arabian Journal of Chemistry. 2022; 15(2): 103565. doi: 10.1016/j.arabjc.2021.103565

44. Behboudi A, Mohammadi T, Ulbricht M. High performance antibiofouling hollow fiber polyethersulfone nanocomposite membranes incorporated with novel surface-modified silver nanoparticles suitable for membrane bioreactor application. Journal of Industrial and Engineering Chemistry. 2023; 119: 298-314. doi: 10.1016/j.jiec.2022.11.049

45. Saini N, Awasthi K. Insights into the progress of polymeric nano-composite membranes for hydrogen separation and purification in the direction of sustainable energy resources. Separation and Purification Technology. 2022; 282: 120029. doi: 10.1016/j.seppur.2021.120029

46. Wang C, Park MJ, Yu H, et al. Recent advances of nanocomposite membranes using layer-by-layer assembly. Journal of Membrane Science. 2022; 661: 120926. doi: 10.1016/j.memsci.2022.120926

47. Patel H, Acharya NK. Spectroscopic and Transport Behavior of HAB-6FDA Thermally Rearranged (TR) Nanocomposite Membranes. Published online November 8, 2021. doi: 10.21203/rs.3.rs-1030872/v1

48. Song P, Wang H. High‐Performance Polymeric Materials through Hydrogen‐Bond Cross‐Linking. Advanced Materials. 2019; 32(18). doi: 10.1002/adma.201901244

49. Vatanpour V, Jouyandeh M, Akhi H, et al. Hyperbranched polyethylenimine functionalized silica/polysulfone nanocomposite membranes for water purification. Chemosphere. 2022; 290: 133363. doi: 10.1016/j.chemosphere.2021.133363

50. Barzegar T, Hassanajili S. Fabrication and characterization of dual layer PEBAX‐SiO2/polyethersulfone nanocomposite membranes for separation of CO2/CH4 gases. Journal of Applied Polymer Science. 2021; 139(6). doi: 10.1002/app.51624

51. Khdary NH, Abdelsalam ME. Polymer-silica nanocomposite membranes for CO2 capturing. Arabian Journal of Chemistry. 2020; 13(1): 557-567. doi: 10.1016/j.arabjc.2017.06.001

52. Lakhotia SR, Mukhopadhyay M, Kumari P. Surface-Modified Nanocomposite Membranes. Separation & Purification Reviews. 2017; 47(4): 288-305. doi: 10.1080/15422119.2017.1386681

53. Ahmadian-Alam L, Mahdavi H. A novel polysulfone-based ternary nanocomposite membrane consisting of metal-organic framework and silica nanoparticles: As proton exchange membrane for polymer electrolyte fuel cells. Renewable Energy. 2018; 126: 630-639. doi: 10.1016/j.renene.2018.03.075

54. Shanmugasundar S, Kannan N, Sundaravadivel E, et al. Study on the inflammatory response of PMMA/polystyrene/silica nanocomposite membranes for drug delivery and dental applications. PLOS ONE. 2019; 14(3): e0209948. doi: 10.1371/journal.pone.0209948

55. Liu TY, Yuan HG, Liu YY, et al. Metal–Organic Framework Nanocomposite Thin Films with Interfacial Bindings and Self-Standing Robustness for High Water Flux and Enhanced Ion Selectivity. ACS Nano. 2018; 12(9): 9253-9265. doi: 10.1021/acsnano.8b03994

56. Shen L, Huang Z, Liu Y, et al. Polymeric Membranes Incorporated With ZnO Nanoparticles for Membrane Fouling Mitigation: A Brief Review. Frontiers in Chemistry. 2020; 8. doi: 10.3389/fchem.2020.00224

57. Douna I, Farrukh S, Pervaiz E, et al. Blending of ZnO Nanorods in Cellulose Acetate Mixed Matrix Membrane for Enhancement of CO2 Permeability. Journal of Polymers and the Environment. 2023; 31(6): 2549-2565. doi: 10.1007/s10924-022-02594-z

58. Bakhtin DS, Sokolov SE, Borisov IL, et al. Mitigation of Physical Aging of Polymeric Membrane Materials for Gas Separation: A Review. Membranes. 2023; 13(5): 519. doi: 10.3390/membranes13050519

59. Ramesh M, Rajeshkumar L, Bhoopathi R. Carbon substrates: a review on fabrication, properties and applications. Carbon Letters. 2021; 31(4): 557-580. doi: 10.1007/s42823-021-00264-z

60. Dhand V, Rhee KY, Kim H J, et al. A Comprehensive Review of Graphene Nanocomposites: Research Status and Trends. Journal of Nanomaterials. 2013; 2013: 1-14. doi: 10.1155/2013/763953

61. Xia K, Zhan H, Gu Y. Graphene and Carbon Nanotube Hybrid Structure: A Review. Procedia IUTAM. 2017; 21: 94-101. doi: 10.1016/j.piutam.2017.03.042

62. Liu WW, Chai SP, Mohamed AR, et al. Synthesis and characterization of graphene and carbon nanotubes: A review on the past and recent developments. Journal of Industrial and Engineering Chemistry. 2014; 20(4): 1171-1185. doi: 10.1016/j.jiec.2013.08.028

63. de Sá MH, Pinto AMFR, Oliveira VB. Passive direct methanol fuel cells as a sustainable alternative to batteries in hearing aid devices – An overview. International Journal of Hydrogen Energy. 2022; 47(37): 16552-16567. doi: 10.1016/j.ijhydene.2022.03.146

64. Johnson DJ, Hilal N. Nanocomposite nanofiltration membranes: State of play and recent advances. Desalination. 2022; 524: 115480. doi: 10.1016/j.desal.2021.115480

65. Wu J, Chung T. Supramolecular Polymer Network Membranes with Molecular‐Sieving Nanocavities for Efficient Pre‐Combustion CO2 Capture. Small Methods. 2021; 6(1). doi: 10.1002/smtd.202101288

66. Sahu A, Dosi R, Kwiatkowski C, et al. Advanced Polymeric Nanocomposite Membranes for Water and Wastewater Treatment: A Comprehensive Review. Polymers. 2023; 15(3): 540. doi: 10.3390/polym15030540

67. Nadda AK, Banerjee P, Sharma S, et al. Membranes for Water Treatment and Remediation. Springer Nature Singapore; 2023. doi: 10.1007/978-981-19-9176-9

68. Saraswathi MSSA, Nagendran A, Rana D. Tailored polymer nanocomposite membranes based on carbon, metal oxide and silicon nanomaterials: a review. Journal of Materials Chemistry A. 2019; 7(15): 8723-8745. doi: 10.1039/c8ta11460a

69. Yang C, Jin C, Chen F. Micro-tubular solid oxide fuel cells fabricated by phase-inversion method. Electrochemistry Communications. 2010; 12(5): 657-660. doi: 10.1016/j.elecom.2010.02.024

70. Cho JW, Paul DR. Nylon 6 nanocomposites by melt compounding, Polymer, 2001, 42(3): 1083-1094. doi: 10.1016/S0032-3861(00)00380-3

71. Yuan X, Zhang Y, Dong C, et al. Morphology of ultrafine polysulfone fibers prepared by electrospinning. Polymer International. 2004; 53(11): 1704-1710. doi: 10.1002/pi.1538

72. Khan S, Ullah I, Rahman MU, et al. Inorganic-polymer composite electrolytes: basics, fabrications, challenges and future perspectives. Reviews in Inorganic Chemistry. 2024. doi: 10.1515/revic-2023-0030

73. Khan S, Ajmal S, Hussain T, et al. Clay-based materials for enhanced water treatment: adsorption mechanisms, challenges, and future directions. Journal of Umm Al-Qura University for Applied Sciences. Published online October 16, 2023. doi: 10.1007/s43994-023-00083-0

74. Ajaj Y, AL-Salman HNK, Hussein AM, et al. Effect and investigating of graphene nanoparticles on mechanical, physical properties of polylactic acid polymer. Case Studies in Chemical and Environmental Engineering. 2024; 9: 100612. doi: 10.1016/j.cscee.2024.100612

75. Khan I, Khan I, Saeed K, et al. Polymer nanocomposites: an overview. Smart Polymer Nanocomposites. Published online 2023: 167-184. doi: 10.1016/b978-0-323-91611-0.00017-7

76. Sin C, Baranovskii ES. Hölder continuity of solutions for unsteady generalized Navier–Stokes equations with p(x,t)-power law in 2D. Journal of Mathematical Analysis and Applications. 2023; 517(2): 126632. doi: 10.1016/j.jmaa.2022.126632

77. Ray M, Verma A, Maiti A, et al. Nano-Engineered Polymer Matrix-Based Composites. Polymer Nanocomposites. Published online July 18, 2023: 21-39. doi: 10.1201/9781003343912-2

78. Wang Y, Nie W, Wang L, et al. Understanding the graphene-polymer interfacial mechanical behavior via coarse-grained modeling. Computational Materials Science. 2023; 222: 112109. doi: 10.1016/j.commatsci.2023.112109

79. Wang H, Xie G, Fang M, et al. Electrical and mechanical properties of antistatic PVC films containing multi-layer graphene. Composites Part B: Engineering. 2015; 79: 444-450. doi: 10.1016/j.compositesb.2015.05.011

80. Akhina H, Gopinathan Nair MR, Kalarikkal N, et al. Plasticized PVC graphene nanocomposites: Morphology, mechanical, and dynamic mechanical properties. Polymer Engineering & Science. 2017; 58(S1). doi: 10.1002/pen.24711

81. Pakizeh M, Karami M, Kooshki S, et al. Advanced toluene/n-heptane separation by pervaporation: investigating the potential of graphene oxide (GO)/PVA mixed matrix membrane. Journal of the Taiwan Institute of Chemical Engineers. 2023; 150: 105025. doi: 10.1016/j.jtice.2023.105025

82. Zhao Y, Lu J, Liu X, et al. Performance enhancement of polyvinyl chloride ultrafiltration membrane modified with graphene oxide. Journal of Colloid and Interface Science. 2016; 480: 1-8. doi: 10.1016/j.jcis.2016.06.075

83. Mruthyunjayappa KC, Paramashivaiah SA, Mallikarjunappa EK, et al. A combined experimental and computational study of flexible polyvinyl alcohol (PVA)/graphene oxide (GO) nanocomposite films for superior UV shielding with improved mechanical properties. Materials Today Communications. 2023; 35: 105662. doi: 10.1016/j.mtcomm.2023.105662

84. Castro-Muñoz R, Buera-González J, de la Iglesia Ó, et al. Towards the dehydration of ethanol using pervaporation cross-linked poly(vinyl alcohol)/graphene oxide membranes. Journal of Membrane Science. 2019; 582: 423-434. doi: 10.1016/j.memsci.2019.03.076

85. Sun J, Qian X, Wang Z, et al. Tailoring the microstructure of poly(vinyl alcohol)-intercalated graphene oxide membranes for enhanced desalination performance of high-salinity water by pervaporation. Journal of Membrane Science. 2020; 599: 117838. doi: 10.1016/j.memsci.2020.117838

86. Thakur AK, Singh SP, Kleinberg MN, et al. Laser-Induced Graphene–PVA Composites as Robust Electrically Conductive Water Treatment Membranes. ACS Applied Materials & Interfaces. 2019; 11(11): 10914-10921. doi: 10.1021/acsami.9b00510

87. Sali S, Mackey HR, Abdala AA. Effect of Graphene Oxide Synthesis Method on Properties and Performance of Polysulfone-Graphene Oxide Mixed Matrix Membranes. Nanomaterials. 2019; 9(5): 769. doi: 10.3390/nano9050769

88. Zinadini S, Zinatizadeh AA, Rahimi M, et al. Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates. Journal of Membrane Science. 2014; 453: 292-301. doi: 10.1016/j.memsci.2013.10.070

89. Ammar A, Al-Enizi AM, AlMaadeed MA, et al. Influence of graphene oxide on mechanical, morphological, barrier, and electrical properties of polymer membranes. Arabian Journal of Chemistry. 2016; 9(2): 274-286. doi: 10.1016/j.arabjc.2015.07.006

90. Ganesh BM, Isloor AM, Ismail AF. Enhanced hydrophilicity and salt rejection study of graphene oxide-polysulfone mixed matrix membrane. Desalination. 2013; 313: 199-207. doi: 10.1016/j.desal.2012.11.037

91. Rezaee R, Nasseri S, Mahvi AH, et al. Fabrication and characterization of a polysulfone-graphene oxide nanocomposite membrane for arsenate rejection from water. Journal of Environmental Health Science and Engineering. 2015; 13(1). doi: 10.1186/s40201-015-0217-8

92. Liao Z, Zhu J, Li X, et al. Regulating composition and structure of nanofillers in thin film nanocomposite (TFN) membranes for enhanced separation performance: A critical review. Separation and Purification Technology. 2021; 266: 118567. doi: 10.1016/j.seppur.2021.118567

93. Xu Y, Bai H, Lu G, et al. Flexible Graphene Films via the Filtration of Water-Soluble Noncovalent Functionalized Graphene Sheets. Journal of the American Chemical Society. 2008; 130(18): 5856-5857. doi: 10.1021/ja800745y

94. Tulugan K, Tian P, Li X, et al. PSF/GO filtering membrane fabricated by electro-spinning applied on arsenic contaminated underground water. Journal of Engineering Research. Published online January 2024. doi: 10.1016/j.jer.2024.01.001

95. Alshahrani AA, El-Habeeb AA, Almutairi AA, et al. Preparation, Characterization and Evaluation of Polyamide-Reduced Graphene Oxide as Selective Membranes for Water Purification. Journal of Composites Science. 2024; 8(1): 24. doi: 10.3390/jcs8010024

96. Yu J, Jing W, Liu E, et al. Sulfonated graphene oxide modified polysulfone-polyamide forward osmosis membrane and its application in fluorine-containing wastewater treatment. Materials Chemistry and Physics. 2024; 313: 128757. doi: 10.1016/j.matchemphys.2023.128757

97. Deng X, Zou C, Han Y, et al. Computational Evaluation of Carriers in Facilitated Transport Membranes for Postcombustion Carbon Capture. The Journal of Physical Chemistry C. 2020; 124(46): 25322-25330. doi: 10.1021/acs.jpcc.0c07627

98. Koenig SP, Wang L, Pellegrino J, et al. Selective molecular sieving through porous graphene. Nature Nanotechnology. 2012; 7(11): 728-732. doi: 10.1038/nnano.2012.162

99. Lee J, Aluru NR. Water-solubility-driven separation of gases using graphene membrane. Journal of Membrane Science. 2013; 428: 546-553. doi: 10.1016/j.memsci.2012.11.006

100. Liu N, Cheng J, Hou W, et al. Unsaturated Zn–N2–O active sites derived from hydroxyl in graphene oxide and zinc atoms in core shell ZIF-8@ZIF-67 nanocomposites enhanced CO2 adsorption capacity. Microporous and Mesoporous Materials. 2021; 312: 110786. doi: 10.1016/j.micromeso.2020.110786

101. Rezakazemi M, Sadrzadeh M, Matsuura T. Thermally stable polymers for advanced high-performance gas separation membranes. Progress in Energy and Combustion Science. 2018; 66: 1-41. doi: 10.1016/j.pecs.2017.11.002

102. Du Y, Huang L, Wang Y, et al. Recent developments in graphene‐based polymer composite membranes: Preparation, mass transfer mechanism, and applications. Journal of Applied Polymer Science. 2019; 136(28). doi: 10.1002/app.47761

103. Li H, Song Z, Zhang X, et al. Ultrathin, Molecular-Sieving Graphene Oxide Membranes for Selective Hydrogen Separation. Science. 2013; 342(6154): 95-98. doi: 10.1126/science.1236686

104. Yang Y, Bolling L, Priolo MA, et al. Super Gas Barrier and Selectivity of Graphene Oxide‐Polymer Multilayer Thin Films. Advanced Materials. 2012; 25(4): 503-508. doi: 10.1002/adma.201202951

105. Liu J, Pan Y, Xu J, et al. Introducing amphipathic copolymer into intermediate layer to fabricate ultra-thin Pebax composite membrane for efficient CO2 capture. Journal of Membrane Science. 2023; 667: 121183. doi: 10.1016/j.memsci.2022.121183

106. Zhang W, Shi Y, Wang B, et al. High-strength electrospun polydimethylsiloxane/polytetrafluoroethylene hybrid membranes with stable and controllable coral-like structures. Composites Part A: Applied Science and Manufacturing. 2023; 164: 107316. doi: 10.1016/j.compositesa.2022.107316

107. Koolivand H, Sharif A, Chehrazi E, et al. Mixed-matrix membranes comprising graphene-oxide nanosheets for CO2/CH4 separation: A comparison between glassy and rubbery polymer matrices. Polymer Science, Series A. 2016; 58(5): 801-809. doi: 10.1134/s0965545x16050084

108. Zakaria NA, Zaliman SQ, Leo CP, et al. Electrochemical cleaning of superhydrophobic polyvinylidene fluoride/polymethyl methacrylate/carbon black membrane after membrane distillation. Journal of the Taiwan Institute of Chemical Engineers. 2022; 138: 104448. doi: 10.1016/j.jtice.2022.104448

109. Baldanza A, Pastore Carbone MG, Brondi C, et al. Chemical Vapour Deposition Graphene–PMMA Nanolaminates for Flexible Gas Barrier. Membranes. 2022; 12(6): 611. doi: 10.3390/membranes12060611

110. Pavlou C, Pastore Carbone MG, Manikas AC, et al. Effective EMI shielding behaviour of thin graphene/PMMA nanolaminates in the THz range. Nature Communications. 2021; 12(1). doi: 10.1038/s41467-021-24970-4

111. Agrawal KV, Benck JD, Yuan Z, et al. Fabrication, Pressure Testing, and Nanopore Formation of Single-Layer Graphene Membranes. The Journal of Physical Chemistry C. 2017; 121(26): 14312-14321. doi: 10.1021/acs.jpcc.7b01796

112. Vinodh R, Atchudan R, Kim HJ, et al. Recent Advancements in Polysulfone Based Membranes for Fuel Cell (PEMFCs, DMFCs and AMFCs) Applications: A Critical Review. Polymers. 2022; 14(2): 300. doi: 10.3390/polym14020300

113. Costa Flores M, Figueiredo KCS. Asymmetric oxygen‐functionalized carbon nanotubes dispersed in polysulfone for CO2 separation. Journal of Applied Polymer Science. 2022; 140(2). doi: 10.1002/app.53303

114. Said N, Mansur S, Zainol Abidin MN, Ismail AF. Fabrication and characterization of polysulfone/iron oxide nanoparticle mixed matrix hollow fiber membranes for hemodialysis: Effect of dope extrusion rate and air gap. Journal of Membrane Science and Research. 2023; 9(1)

115. Sainath K, Modi A, Bellare J. In-situ growth of zeolitic imidazolate framework-67 nanoparticles on polysulfone/graphene oxide hollow fiber membranes enhance CO2/CH4 separation. Journal of Membrane Science. 2020; 614: 118506. doi: 10.1016/j.memsci.2020.118506

116. Wan Z, Jiang Y. Synthesis-structure-performance relationships of nanocomposite polymeric ultrafiltration membranes: A comparative study of two carbon nanofillers. Journal of Membrane Science. 2021; 620: 118847. doi: 10.1016/j.memsci.2020.118847

117. Kalmykov D, Balynin A, Yushkin A, et al. Membranes Based on PTMSP/PVTMS Blends for Membrane Contactor Applications. Membranes. 2022; 12(11): 1160. doi: 10.3390/membranes12111160

118. Olivieri L, Ligi S, De Angelis MG, et al. Effect of Graphene and Graphene Oxide Nanoplatelets on the Gas Permselectivity and Aging Behavior of Poly(trimethylsilyl propyne) (PTMSP). Industrial & Engineering Chemistry Research. 2015; 54(44): 11199-11211. doi: 10.1021/acs.iecr.5b03251

119. Alberto M, Bhavsar R, Luque-Alled JM, et al. Impeded physical aging in PIM-1 membranes containing graphene-like fillers. Journal of Membrane Science. 2018; 563: 513-520. doi: 10.1016/j.memsci.2018.06.026

120. Zhu X, Zhou Y, Hao J, et al. A Charge-Density-Tunable Three/Two-Dimensional Polymer/Graphene Oxide Heterogeneous Nanoporous Membrane for Ion Transport. ACS Nano. 2017; 11(11): 10816-10824. doi: 10.1021/acsnano.7b03576

121. Zhang D, Xu S, Wan R, et al. Functionalized graphene oxide cross-linked poly(2,6-dimethyl-1,4-phenylene oxide)-based anion exchange membranes with superior ionic conductivity. Journal of Power Sources. 2022; 517: 230720. doi: 10.1016/j.jpowsour.2021.230720

122. Chen J, Zhang M, Shen C, et al. Preparation and Characterization of Non-N-Bonded Side-Chain Anion Exchange Membranes Based on Poly(2,6-dimethyl-1,4-phenylene oxide). Industrial & Engineering Chemistry Research. 2022; 61(4): 1715-1724. doi: 10.1021/acs.iecr.1c04171

123. Chu X, Miao S, Zhou A, et al. A strategy to design quaternized poly(2,6-dimethyl-1,4-phenylene oxide) anion exchange membranes by atom transfer radical coupling. Journal of Membrane Science. 2022; 649: 120397. doi: 10.1016/j.memsci.2022.120397

124. Rea R, Ligi S, Christian M, et al. Permeability and Selectivity of PPO/Graphene Composites as Mixed Matrix Membranes for CO2 Capture and Gas Separation. Polymers. 2018; 10(2): 129. doi: 10.3390/polym10020129

125. Theravalappil R, Rahaman M. Patents on graphene-based polymer composites and their applications. Polymer Nanocomposites Containing Graphene. Published online 2022: 615-638. doi: 10.1016/b978-0-12-821639-2.00018-5

126. Kausar A, Ahmad I, Eisa MH, et al. Manufacturing Strategies for Graphene Derivative Nanocomposites—Current Status and Fruitions. Nanomanufacturing. 2023; 3(1): 1-19. doi: 10.3390/nanomanufacturing3010001

127. Kanehashi S, Chen GQ, Scholes CA, et al. Enhancing gas permeability in mixed matrix membranes through tuning the nanoparticle properties. Journal of Membrane Science. 2015; 482: 49-55. doi: 10.1016/j.memsci.2015.01.046

128. Fajardo-Diaz JL, Takeuchi K, Morelos-Gomez A, et al. Enhancing boron rejection in low-pressure reverse osmosis systems using a cellulose fiber–carbon nanotube nanocomposite polyamide membrane: A study on chemical structure and surface morphology. Journal of Membrane Science. 2023; 679: 121691. doi: 10.1016/j.memsci.2023.121691

129. Fathizadeh M, Aroujalian A, Raisi A. Effect of added NaX nano-zeolite into polyamide as a top thin layer of membrane on water flux and salt rejection in a reverse osmosis process. Journal of Membrane Science. 2011; 375(1-2): 88-95. doi: 10.1016/j.memsci.2011.03.017

130. Li J, Cheng L, Song W, et al. In-situ sol-gel generation of SiO2 nanoparticles inside polyamide membrane for enhanced nanofiltration. Desalination. 2022; 540: 115981. doi: 10.1016/j.desal.2022.115981

131. Zahri K, Wong KC, Goh PS, et al. Graphene oxide/polysulfone hollow fiber mixed matrix membranes for gas separation. RSC Advances. 2016; 6(92): 89130-89139. doi: 10.1039/c6ra16820e

132. Anbealagan LD, Ng TYS, Chew TL, et al. Modified Zeolite/Polysulfone Mixed Matrix Membrane for Enhanced CO2/CH4 Separation. Membranes. 2021; 11(8): 630. doi: 10.3390/membranes11080630

133. Abdul Hamid MR, Shean Yaw TC, Mohd Tohir MZ, et al. Zeolitic imidazolate framework membranes for gas separations: Current state-of-the-art, challenges, and opportunities. Journal of Industrial and Engineering Chemistry. 2021; 98: 17-41. doi: 10.1016/j.jiec.2021.03.047

134. Berean KJ, Ou JZ, Nour M, et al. Enhanced Gas Permeation through Graphene Nanocomposites. The Journal of Physical Chemistry C. 2015; 119(24): 13700-13712. doi: 10.1021/acs.jpcc.5b02995

135. Ha H, Park J, Ando S, et al. Gas permeation and selectivity of poly(dimethylsiloxane)/graphene oxide composite elastomer membranes. Journal of Membrane Science. 2016; 518: 131-140. doi: 10.1016/j.memsci.2016.06.028




DOI: https://doi.org/10.24294/jpse.v7i1.4978

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Ayesha Kausar, Ishaq Ahmad

License URL: https://creativecommons.org/licenses/by/4.0/

This site is licensed under a Creative Commons Attribution 4.0 International License.