Effect of sewage sludge ash filler on mode I and mode II interlaminar fracture toughness of S-glass/epoxy composites

Mohamad Alsaadi, Ahmet Erkliğ

Article ID: 431
Vol 5, Issue 1, 2022

(Abstract)

Abstract


In this study, the influence of sewage sludge ash (SSA) waste particle contents on the mechanical properties and interlaminar fracture toughness for mode I and mode II delamination of S-glass fiber-reinforced epoxy composites was investigated. Composite laminate specimens for tensile, flexural double-cantilever beam (DCB), and end-notched fracture (ENF) tests were prepared and tested according to ASTM standards with 5, 10, 15, and 20 wt% SSA-filled S-glass/epoxy composites. Property improvement reasons were explained based on optical and scanning electron microscopy. The highest improvement in tensile and flexural strength was obtained with a 10 wt% content of SSA. The highest mode I and mode II interlaminar fracture toughness’s were obtained with 15 wt% content of SSA. The mode I and mode II interlaminar fracture toughness improved by 33% and 63.6%, respectively, compared to the composite without SSA.


Keywords


SSA; glass fiber; epoxy; mechanical properties; fracture toughness; delamination

Full Text:

PDF


References


1. Sathishkumar T, Satheeshkumar S, Naveen J. Glass fiber-reinforced polymer composites—A review. Journal of Reinforced Plastics and Composites 2014; 33(13): 1258–1275. doi: 10.1177/0731684414530790

2. Srivastava VK, Hogg PJ. Damage performance of particles filled quasi-isotropic glass–fibre reinforced polyester resin composites. Journal of Materials Science 1998; 33: 1119–1128. doi: 10.1023/A:1004353020894

3. Salpekar SA, Raju IS, O’Brien TK. Strain-Energy-Release Rate Analysis of Delamination in a Tapered Laminate Subjected to Tension Load. Journal of Composite Materials 1991; 25(2): 118–141. doi: 10.1177/002199839102500201

4. Song MC, Sankar BV, Subhash G, et al. Analysis of mode I delamination of z-pinned composites using a non-dimensional analytical model. Composites Part B: Engineering 2012; 43(4): 1776–1784. doi: 10.1016/j.compositesb.2012.01.086

5. Mouritz AP, Koh TM. Re-evaluation of mode I bridging traction modelling for z-pinned laminates based on experimental analysis. Composites Part B: Engineering 2014; 56: 797–807. doi: 10.1016/j.compositesb.2013.09.016

6. Pegorin F, Pingkarawat K, Daynes S, et al. Influence of z-pin length on the delamination fracture toughness and fatigue resistance of pinned composites. Composites Part B: Engineering 2015; 78: 298–307. doi: 10.1016/j.compositesb.2015.03.093

7. Mouritz AP, Cox BN. A mechanistic approach to the properties of stitched laminates. Composites Part A: Applied Science and Manufacturing 2000; 31(1): 1–27. doi: 10.1016/S1359-835X(99)00056-1

8. Mezzenga R, Boogh L, Månson JA. A review of dendritic hyperbranched polymer as modifiers in epoxy composites. Composites Science and Technology 2001; 61(5): 787–795. doi: 10.1016/S0266-3538(01)00022-7

9. van der Heijden S, Daelemans L, De Schoenmaker B, et al. Interlaminar toughening of resin transfer moulded glass fibre epoxy laminates by polycaprolactone electrospun nanofibres. Composites Science and Technology 2014; 104: 66–73. doi: 10.1016/j.compscitech.2014.09.005

10. Dadfar MR, Ghadami F. Effect of rubber modification on fracture toughness properties of glass reinforced hot cured epoxy composites. Materials & Design 2013; 47: 16–20. doi: 10.1016/j.matdes.2012.12.035

11. Tang Y, Ye L, Zhang D, et al. Characterization of transverse tensile, interlaminar shear and interlaminate fracture in CF/EP laminates with 10wt% and 20wt% silica nanoparticles in matrix resins. Composites Part A: Applied Science and Manufacturing 2011; 42(12): 1943–1950. doi: 10.1016/j.compositesa.2011.08.019

12. Fan Z, Santare MH, Advani SG. Interlaminar shear strength of glass fiber reinforced epoxy composites enhanced with multi-walled carbon nanotubes. Composites Part A: Applied Science and Manufacturing 2008; 39(3): 540–554. doi: 10.1016/j.compositesa.2007.11.013

13. Zhu J, Imam A, Crane R, et al. Processing a glass fiber reinforced vinyl ester composite with nanotube enhancement of interlaminar shear strength. Composites Science and Technology 2007; 67(7–8): 1509–1517. doi: 10.1016/j.compscitech.2006.07.018

14. Wang K, Chen L, Wu J, et al. Epoxy Nanocomposites with Highly Exfoliated Clay: Mechanical Properties and Fracture Mechanisms. Macromolecules 2005; 38(3): 788–800. doi: 10.1021/ma048465n

15. Coleman JN, Khan U, Blau WJ, et al. Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites. Carbon 2006; 44(9): 1624–1652. doi: 10.1016/j.carbon.2006.02.038

16. Shahid N, Villate RG, Barron AR. Chemically functionalized alumina nanoparticle effect on carbon fiber/epoxy composites. Composites Science and Technology 2005; 65(14): 2250–2258. doi: 10.1016/j.compscitech.2005.04.001

17. Gardea F, Lagoudas DC. Characterization of electrical and thermal properties of carbon nanotube/epoxy composites. Composites Part B: Engineering 2014; 56: 611–620. doi: 10.1016/j.compositesb.2013.08.032

18. Jiang Q, Wang X, Zhu Y, et al. Mechanical, electrical and thermal properties of aligned carbon nanotube/polyimide composites. Composites Part B: Engineering 2014; 56: 408–412. doi: 10.1016/j.compositesb.2013.08.064

19. Shiu SC, Tsai JL. Characterizing thermal and mechanical properties of graphene/epoxy nanocomposites. Composites Part B: Engineering 2014; 56: 691–697. doi: 10.1016/j.compositesb.2013.09.007

20. Chen Q, Wu W, Zhao Y, et al. Nano-epoxy resins containing electrospun carbon nanofibers and the resulting hybrid multi-scale composites. Composites Part B: Engineering. 2014; 58: 43–53. doi: 10.1016/j.compositesb.2013.10.048

21. Jen M, Tseng Y, Wu C. Manufacturing and mechanical response of nanocomposite laminates. Composites Science and Technology 2005; 65(5): 775–779. doi: 10.1016/j.compscitech.2004.10.010

22. Wang WX, Takao Y, Matsubara T, Kim HS. Improvement of the interlaminar fracture toughness of composite laminates by whisker reinforced interlamination. Composites Science and Technology 2002; 62(6): 767–774. doi: 10.1016/S0266-3538(02)00052-0

23. Wang Z, Huang X, Bai L, et al. Effect of micro-Al2O3 contents on mechanical property of carbon fiber reinforced epoxy matrix composites. Composites Part B: Engineering 2016; 91: 392–398. doi: 10.1016/j.compositesb.2016.01.052

24. Smol M, Kulczycka J, Henclik A, et al. The possible use of sewage sludge ash (SSA) in the construction industry as a way towards a circular economy. Journal of Cleaner Production 2015; 95: 45–54. doi: 10.1016/j.jclepro.2015.02.051

25. Turkish Statistical Institute. Municipals Waste Water Statistics. Turkish Statistical Institute; 2010.

26. Kütük MA, Aksoy M. A case study on sewage sludge incineration plant: GASKI. In: Proceedings of the Second International Conference on Water, Energy and the Environment; 21–24 September 2013; Kusadası, Turkey. pp. 21–24.

27. ASTM D5528-94A: Standard test method for Mode I interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites. Available online: https://standards.iteh.ai/catalog/standards/astm/c5f96a21-fd02-4f31-8126-50f14521e4d0/astm-d5528-94a (accessed on 2 February 2022).

28. Albertsen H, Ivens J, Peters P, Wevers M, Verpoest I. Interlaminar fracture toughness of CFRP influenced by fibre surface treatment: Part 1. Experimental results. Composites Science and Technology 1995; 54(2): 133–145. doi: 10.1016/0266-3538(95)00048-8

29. Tugrul Seyhan A, Tanoglu M, Schulte K. Mode I and mode II fracture toughness of E-glass non-crimp fabric/carbon nanotube (CNT) modified polymer based composites. Engineering Fracture Mechanics 2008; 75(18): 5151–5162. doi: 10.1016/j.engfracmech.2008.08.003

30. Dharmawan F, Simpson G, Herszberg I, et al. Mixed mode fracture toughness of GFRP composites. Composite Structures. 2006; 75(1–4): 328–338. doi: 10.1016/j.compstruct.2006.04.020

31. Carlsson LA, Gillespie JW, Pipes RB. On the Analysis and Design of the End Notched Flexure (ENF) Specimen for Mode II Testing. Journal of Composite Materials 1986; 20(6): 594–604. doi: 10.1177/002199838602000606

32. Lee JJ, Lim JO, Huh JS. Mode II interlaminar fracture behavior of carbon bead‐filled epoxy/glass fiber hybrid composite. Polymer Composites 2000; 21(2): 343–352. doi: 10.1002/pc.10191

33. Srivastava VK, Hogg PJ. Moisture effects on the toughness, mode-I and mode-II of particles filled quasi-isotropic glass-fiber reinforced polyester resin composites. Journal of Materials Science 1998; 33(5): 1129–1136. doi: 10.1023/A:1004305104964

34. Lee SM. Mode II delamination failure mechanisms of polymer matrix composites. Journal of Materials Science 1997; 32(5): 1287–1295. doi: 10.1023/A:1018552506085

35. Wang TW, Blum FD, Dharani LR. Effect of interfacial mobility on flexural strength and fracture toughness of glass/epoxy laminates. Journal of Materials Science 1999; 34: 4873–4882. doi: 10.1023/A:1004676214290

36. Stevanovic D, Kalyanasundaram S, Lowe A, Jar PY. Mode I and mode II delamination properties of glass/vinyl-ester composite toughened by particulate modified interlayers. Composites Science and Technology 2003; 63(13): 1949–1964. doi: 10.1016/S0266-3538(03)00162-3

37. Chai H. Observation of deformation and damage at the tip of cracks in adhesive bonds loaded in shear and assessment of a criterion for fracture. International Journal of Fracture 1993; 60(4): 311–326. doi: 10.1007/bf00034739

38. Chai H. Micromechanics of shear deformations in cracked bonded joints. International Journal of Fracture 1992; 58(3): 223–239. doi: 10.1007/bf00015617




DOI: https://doi.org/10.24294/jpse.v5i1.431

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Mohamad Alsaadi, Ahmet Erkliğ

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This site is licensed under a Creative Commons Attribution 4.0 International License.