Effect of sewage sludge ash filler on mode I and mode II interlaminar fracture toughness of S-glass/epoxy composites

Mohamad Alsaadi, Ahmet Erkliğ

Article ID: 431
Vol 5, Issue 1, 2022

VIEWS - 1068 (Abstract) 12 (PDF)

Abstract


In this study, the influence of sewage sludge ash (SSA) waste particle contents on the mechanical properties and interlaminar fracture toughness for mode I and mode II delamination of S-glass fiber-reinforced epoxy composites was investigated. Composite laminate specimens for tensile, flexural double-cantilever beam (DCB), and end-notched fracture (ENF) tests were prepared and tested according to ASTM standards with 5, 10, 15, and 20 wt% SSA-filled S-glass/epoxy composites. Property improvement reasons were explained based on optical and scanning electron microscopy. The highest improvement in tensile and flexural strength was obtained with a 10 wt% content of SSA. The highest mode I and mode II interlaminar fracture toughness’s were obtained with 15 wt% content of SSA. The mode I and mode II interlaminar fracture toughness improved by 33% and 63.6%, respectively, compared to the composite without SSA.


Keywords


SSA; glass fiber; epoxy; mechanical properties; fracture toughness; delamination

Full Text:

PDF


References


1. Sathishkumar T, Satheeshkumar S, Naveen J. Glass fiber-reinforced polymer composites—A review. Journal of Reinforced Plastics and Composites 2014; 33(13): 1258–1275. doi: 10.1177/0731684414530790

2. Srivastava VK, Hogg PJ. Damage performance of particles filled quasi-isotropic glass–fibre reinforced polyester resin composites. Journal of Materials Science 1998; 33: 1119–1128. doi: 10.1023/A:1004353020894

3. Salpekar SA, Raju IS, O’Brien TK. Strain-Energy-Release Rate Analysis of Delamination in a Tapered Laminate Subjected to Tension Load. Journal of Composite Materials 1991; 25(2): 118–141. doi: 10.1177/002199839102500201

4. Song MC, Sankar BV, Subhash G, et al. Analysis of mode I delamination of z-pinned composites using a non-dimensional analytical model. Composites Part B: Engineering 2012; 43(4): 1776–1784. doi: 10.1016/j.compositesb.2012.01.086

5. Mouritz AP, Koh TM. Re-evaluation of mode I bridging traction modelling for z-pinned laminates based on experimental analysis. Composites Part B: Engineering 2014; 56: 797–807. doi: 10.1016/j.compositesb.2013.09.016

6. Pegorin F, Pingkarawat K, Daynes S, et al. Influence of z-pin length on the delamination fracture toughness and fatigue resistance of pinned composites. Composites Part B: Engineering 2015; 78: 298–307. doi: 10.1016/j.compositesb.2015.03.093

7. Mouritz AP, Cox BN. A mechanistic approach to the properties of stitched laminates. Composites Part A: Applied Science and Manufacturing 2000; 31(1): 1–27. doi: 10.1016/S1359-835X(99)00056-1

8. Mezzenga R, Boogh L, Månson JA. A review of dendritic hyperbranched polymer as modifiers in epoxy composites. Composites Science and Technology 2001; 61(5): 787–795. doi: 10.1016/S0266-3538(01)00022-7

9. van der Heijden S, Daelemans L, De Schoenmaker B, et al. Interlaminar toughening of resin transfer moulded glass fibre epoxy laminates by polycaprolactone electrospun nanofibres. Composites Science and Technology 2014; 104: 66–73. doi: 10.1016/j.compscitech.2014.09.005

10. Dadfar MR, Ghadami F. Effect of rubber modification on fracture toughness properties of glass reinforced hot cured epoxy composites. Materials & Design 2013; 47: 16–20. doi: 10.1016/j.matdes.2012.12.035

11. Tang Y, Ye L, Zhang D, et al. Characterization of transverse tensile, interlaminar shear and interlaminate fracture in CF/EP laminates with 10wt% and 20wt% silica nanoparticles in matrix resins. Composites Part A: Applied Science and Manufacturing 2011; 42(12): 1943–1950. doi: 10.1016/j.compositesa.2011.08.019

12. Fan Z, Santare MH, Advani SG. Interlaminar shear strength of glass fiber reinforced epoxy composites enhanced with multi-walled carbon nanotubes. Composites Part A: Applied Science and Manufacturing 2008; 39(3): 540–554. doi: 10.1016/j.compositesa.2007.11.013

13. Zhu J, Imam A, Crane R, et al. Processing a glass fiber reinforced vinyl ester composite with nanotube enhancement of interlaminar shear strength. Composites Science and Technology 2007; 67(7–8): 1509–1517. doi: 10.1016/j.compscitech.2006.07.018

14. Wang K, Chen L, Wu J, et al. Epoxy Nanocomposites with Highly Exfoliated Clay: Mechanical Properties and Fracture Mechanisms. Macromolecules 2005; 38(3): 788–800. doi: 10.1021/ma048465n

15. Coleman JN, Khan U, Blau WJ, et al. Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites. Carbon 2006; 44(9): 1624–1652. doi: 10.1016/j.carbon.2006.02.038

16. Shahid N, Villate RG, Barron AR. Chemically functionalized alumina nanoparticle effect on carbon fiber/epoxy composites. Composites Science and Technology 2005; 65(14): 2250–2258. doi: 10.1016/j.compscitech.2005.04.001

17. Gardea F, Lagoudas DC. Characterization of electrical and thermal properties of carbon nanotube/epoxy composites. Composites Part B: Engineering 2014; 56: 611–620. doi: 10.1016/j.compositesb.2013.08.032

18. Jiang Q, Wang X, Zhu Y, et al. Mechanical, electrical and thermal properties of aligned carbon nanotube/polyimide composites. Composites Part B: Engineering 2014; 56: 408–412. doi: 10.1016/j.compositesb.2013.08.064

19. Shiu SC, Tsai JL. Characterizing thermal and mechanical properties of graphene/epoxy nanocomposites. Composites Part B: Engineering 2014; 56: 691–697. doi: 10.1016/j.compositesb.2013.09.007

20. Chen Q, Wu W, Zhao Y, et al. Nano-epoxy resins containing electrospun carbon nanofibers and the resulting hybrid multi-scale composites. Composites Part B: Engineering. 2014; 58: 43–53. doi: 10.1016/j.compositesb.2013.10.048

21. Jen M, Tseng Y, Wu C. Manufacturing and mechanical response of nanocomposite laminates. Composites Science and Technology 2005; 65(5): 775–779. doi: 10.1016/j.compscitech.2004.10.010

22. Wang WX, Takao Y, Matsubara T, Kim HS. Improvement of the interlaminar fracture toughness of composite laminates by whisker reinforced interlamination. Composites Science and Technology 2002; 62(6): 767–774. doi: 10.1016/S0266-3538(02)00052-0

23. Wang Z, Huang X, Bai L, et al. Effect of micro-Al2O3 contents on mechanical property of carbon fiber reinforced epoxy matrix composites. Composites Part B: Engineering 2016; 91: 392–398. doi: 10.1016/j.compositesb.2016.01.052

24. Smol M, Kulczycka J, Henclik A, et al. The possible use of sewage sludge ash (SSA) in the construction industry as a way towards a circular economy. Journal of Cleaner Production 2015; 95: 45–54. doi: 10.1016/j.jclepro.2015.02.051

25. Turkish Statistical Institute. Municipals Waste Water Statistics. Turkish Statistical Institute; 2010.

26. Kütük MA, Aksoy M. A case study on sewage sludge incineration plant: GASKI. In: Proceedings of the Second International Conference on Water, Energy and the Environment; 21–24 September 2013; Kusadası, Turkey. pp. 21–24.

27. ASTM D5528-94A: Standard test method for Mode I interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites. Available online: https://standards.iteh.ai/catalog/standards/astm/c5f96a21-fd02-4f31-8126-50f14521e4d0/astm-d5528-94a (accessed on 2 February 2022).

28. Albertsen H, Ivens J, Peters P, Wevers M, Verpoest I. Interlaminar fracture toughness of CFRP influenced by fibre surface treatment: Part 1. Experimental results. Composites Science and Technology 1995; 54(2): 133–145. doi: 10.1016/0266-3538(95)00048-8

29. Tugrul Seyhan A, Tanoglu M, Schulte K. Mode I and mode II fracture toughness of E-glass non-crimp fabric/carbon nanotube (CNT) modified polymer based composites. Engineering Fracture Mechanics 2008; 75(18): 5151–5162. doi: 10.1016/j.engfracmech.2008.08.003

30. Dharmawan F, Simpson G, Herszberg I, et al. Mixed mode fracture toughness of GFRP composites. Composite Structures. 2006; 75(1–4): 328–338. doi: 10.1016/j.compstruct.2006.04.020

31. Carlsson LA, Gillespie JW, Pipes RB. On the Analysis and Design of the End Notched Flexure (ENF) Specimen for Mode II Testing. Journal of Composite Materials 1986; 20(6): 594–604. doi: 10.1177/002199838602000606

32. Lee JJ, Lim JO, Huh JS. Mode II interlaminar fracture behavior of carbon bead‐filled epoxy/glass fiber hybrid composite. Polymer Composites 2000; 21(2): 343–352. doi: 10.1002/pc.10191

33. Srivastava VK, Hogg PJ. Moisture effects on the toughness, mode-I and mode-II of particles filled quasi-isotropic glass-fiber reinforced polyester resin composites. Journal of Materials Science 1998; 33(5): 1129–1136. doi: 10.1023/A:1004305104964

34. Lee SM. Mode II delamination failure mechanisms of polymer matrix composites. Journal of Materials Science 1997; 32(5): 1287–1295. doi: 10.1023/A:1018552506085

35. Wang TW, Blum FD, Dharani LR. Effect of interfacial mobility on flexural strength and fracture toughness of glass/epoxy laminates. Journal of Materials Science 1999; 34: 4873–4882. doi: 10.1023/A:1004676214290

36. Stevanovic D, Kalyanasundaram S, Lowe A, Jar PY. Mode I and mode II delamination properties of glass/vinyl-ester composite toughened by particulate modified interlayers. Composites Science and Technology 2003; 63(13): 1949–1964. doi: 10.1016/S0266-3538(03)00162-3

37. Chai H. Observation of deformation and damage at the tip of cracks in adhesive bonds loaded in shear and assessment of a criterion for fracture. International Journal of Fracture 1993; 60(4): 311–326. doi: 10.1007/bf00034739

38. Chai H. Micromechanics of shear deformations in cracked bonded joints. International Journal of Fracture 1992; 58(3): 223–239. doi: 10.1007/bf00015617




DOI: https://doi.org/10.24294/jpse.v1i3.431

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Mohamad Alsaadi, Ahmet Erkliğ

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This site is licensed under a Creative Commons Attribution 4.0 International License.