Advancements in nanohybrids: From coordination materials to flexible solar cells

Shahab Khan, Inam Ullah, Salman Khan, Sanila Ajmal, Najmus Saqib, Faizan Ur Rahman, Shahid Ali

Article ID: 4276
Vol 7, Issue 1, 2024

(Abstract)

Abstract


This comprehensive review explores the forefront of nanohybrid materials, focusing on the integration of coordination materials in various applications, with a spotlight on their role in the development of flexible solar cells. Coordination material-based nanohybrids, characterized by their unique properties and multifunctionality, have garnered significant attention in fields ranging from catalysis and sensing to drug delivery and energy storage. The discussion investigates the synthesis methods, properties, and potential applications of these nanohybrids, underscoring their versatility in materials science. Additionally, the review investigates the integration of coordination nanohybrids in perovskite solar cells (PSCs), showcasing their ability to enhance the performance and stability of next-generation photovoltaic devices. The narrative further expands to encompass the synthesis of luminescent nanohybrids for bioimaging purposes and the development of layered, two-dimensional (2D) material-based nanostructured hybrids for energy storage and conversion. The exploration culminates in an examination of the synthesis of conductive polymer nanostructures, elucidating their potential in drug delivery systems. Last but not least, the article discusses the cutting-edge realm of flexible solar cells, emphasizing their adaptability and lightweight design. Through a systematic examination of these diverse nanohybrid materials, this review sheds light on the current state of the art, challenges, and prospects, providing valuable insights for researchers and practitioners in the fields of materials science, nanotechnology, and renewable energy.


Keywords


coordination materials; nanohybrids; advanced energy storage; solar cells

Full Text:

PDF


References


1. Zhao J, Wang S, Lu S, et al. A luminescent europium-dipicolinic acid nanohybrid for the rapid and selective sensing of pyrophosphate and alkaline phosphatase activity. Nanoscale. 2018; 10(15): 7163-7170. doi: 10.1039/c8nr00223a

2. Munawar A, Tahir MA, Shaheen A, et al. Investigating nanohybrid material based on 3D CNTs@Cu nanoparticle composite and imprinted polymer for highly selective detection of chloramphenicol. Journal of Hazardous Materials. 2018; 342: 96-106. doi: 10.1016/j.jhazmat.2017.08.014

3. Maphutha S, Moothi K, Meyyappan M, et al. A carbon nanotube-infused polysulfone membrane with polyvinyl alcohol layer for treating oil-containing waste water. Scientific Reports. 2013; 3(1). doi: 10.1038/srep01509

4. Mutti AM, Canisares FS, Santos JA, et al. Silica-based nanohybrids containing europium complexes covalently grafted: structural, luminescent, and cell labeling investigation. Journal of Sol-Gel Science and Technology. 2023; 1-17.

5. Liu X, Zheng W, Kumar R, et al. Conducting polymer-based nanostructures for gas sensors. Coordination Chemistry Reviews. 2022; 462: 214517. doi: 10.1016/j.ccr.2022.214517

6. Chaudhuri H, Yun YS. Synthesis and environmental applications of graphene oxide/layered double hydroxides and graphene oxide/MXenes: A critical review. Separation and Purification Technology. 2022; 297: 121518. doi: 10.1016/j.seppur.2022.121518

7. Khan S, Iqbal A. Organic polymers revolution: Applications and formation strategies, and future perspectives. Journal of Polymer Science and Engineering. 2023; 6(1): 3125. doi: 10.24294/jpse.v6i1.3125

8. Lonkar SP, Pillai VV, Patole SP, et al. Scalable in Situ Synthesis of 2D–2D-Type Graphene-Wrapped SnS2 Nanohybrids for Enhanced Supercapacitor and Electrocatalytic Applications. ACS Applied Energy Materials. 2020; 3(5): 4995-5005. doi: 10.1021/acsaem.0c00519

9. Kojima A, Teshima K, Shirai Y, et al. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society. 2009; 131(17): 6050-6051. doi: 10.1021/ja809598r

10. De Wolf S, Holovsky J, Moon SJ, et al. Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance. The Journal of Physical Chemistry Letters. 2014; 5(6): 1035-1039. doi: 10.1021/jz500279b

11. Miyata A, Mitioglu A, Plochocka P, et al. Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites. Nature Physics. 2015; 11(7): 582-587. doi: 10.1038/nphys3357

12. Malinkiewicz O, Yella A, Lee YH, et al. Perovskite solar cells employing organic charge-transport layers. Nature Photonics. 2013; 8(2): 128-132. doi: 10.1038/nphoton.2013.341

13. Ullah A, Shah Bukhari K, Khan S, et al. Diversification Via Coupling Reactions and Biological Activities of Pyrimidine Derivatives. ChemistrySelect. 2023; 8(47). doi: 10.1002/slct.202303072

14. Xu B, Bi D, Hua Y, et al. A low-cost spiro[fluorene-9,9′-xanthene]-based hole transport material for highly efficient solid-state dye-sensitized solar cells and perovskite solar cells. Energy & Environmental Science. 2016; 9(3): 873-877. doi: 10.1039/c6ee00056h

15. Gong J, Sumathy K, Qiao Q, et al. Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends. Renewable and Sustainable Energy Reviews. 2017; 68: 234-246. doi: 10.1016/j.rser.2016.09.097

16. Zulkifili ANB, Kento T, Daiki M, et al. The Basic Research on the Dye-Sensitized Solar Cells (DSSC). Journal of Clean Energy Technologies. 2015; 3(5): 382-387. doi: 10.7763/jocet.2015.v3.228

17. Rahman FU, Khan S, Rahman MU, et al. Effect of ionic strength on DNA–dye interactions of Victoria blue B and methylene green using UV–visible spectroscopy. Zeitschrift für Physikalische Chemie. 2023; 238(1): 173-186. doi: 10.1515/zpch-2023-0365

18. Nazir S, Zhang JM, Junaid M, et al. Metal-based nanoparticles: basics, types, fabrications and their electronic applications. Zeitschrift für Physikalische Chemie. 2024; 0(0). doi: 10.1515/zpch-2023-0375

19. Sokolský M, Cirák J. Dye-sensitized solar cells: materials and processes. Acta Electrotechnica et Informatica. 2010; 10(3): 78-81.

20. Khan S, Ajmal S, Hussain T, Rahman MU. Clay-based materials for enhanced water treatment: adsorption mechanisms, challenges, and future directions. Journal of Umm Al-Qura University for Applied Sciences. 2023; 1-16.

21. Hao S, Wu J, Huang Y, et al. Natural dyes as photosensitizers for dye-sensitized solar cell. Solar Energy. 2006; 80(2): 209-214. doi: 10.1016/j.solener.2005.05.009

22. Kim TY, Park KH, Lee JW, et al. Hierarchical nanorod/nanoflower TiO2 photoanode for natural dye-sensitized solar cells. International Journal of Electrochemical Science. (2015); 10(11): 9466-947.

23. Odobel F, Blart E, Lagrée M, et al. Porphyrin dyes for TiO2 sensitization. Journal of Materials Chemistry. 2003; 13(3): 502-510. doi: 10.1039/b210674d

24. Islam A, Sugihara H, Hara K, et al. Dye Sensitization of Nanocrystalline Titanium Dioxide with Square Planar Platinum(II) Diimine Dithiolate Complexes. Inorganic Chemistry. 2001; 40(21): 5371-5380. doi: 10.1021/ic010391y

25. Gul Z, Salman M, Khan S, et al. Single Organic Ligands Act as a Bifunctional Sensor for Subsequent Detection of Metal and Cyanide Ions, a Statistical Approach toward Coordination and Sensitivity. Critical Reviews in Analytical Chemistry. Published online March 13, 2023: 1-17. doi: 10.1080/10408347.2023.2186165

26. Zhang D, Lanier SM, Downing JA, et al. Betalain pigments for dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry. 2008; 195(1): 72-80. doi: 10.1016/j.jphotochem.2007.07.038

27. Khan S, Zahoor M, Rahman MU, et al. Cocrystals; basic concepts, properties and formation strategies. Zeitschrift für Physikalische Chemie. 2023; 237(3): 273-332. doi: 10.1515/zpch-2022-0175

28. Lau KKS, Soroush M. Overview of Dye-Sensitized Solar Cells. Dye-Sensitized Solar Cells. Published online 2019: 1-49. doi: 10.1016/b978-0-12-814541-8.00001-x

29. Sarkar A, Chatterjee P, Chakraborty AK. Sulfide and Selenide Based Materials for Emerging Applications. Sustainable Energy Harvesting and Storage Technology. Elsevier; 2022.

30. Duan L, Uddin A. Progress in Stability of Organic Solar Cells. Advanced Science. 2020; 7(11). doi: 10.1002/advs.201903259

31. Khan, S. Phase engineering and impact of external stimuli for phase tuning in 2D materials. Advanced Energy Conversion Materials. 2023; 5(1): 40-55.

32. Khan S, Rahman M, Marwani HM, et al. Bicomponent polymorphs of salicylic acid, their antibacterial potentials, intermolecular interactions, DFT and docking studies. Zeitschrift für Physikalische Chemie. 2023; 238(01): 1-16.

33. Ullah I, Khan S. Calligraphy and painting scraps of old and new Asian papers, their simulation, performance, sources, and characteristics. Journal of Polymer Science and Engineering. 2024; 6(1): 3260. doi: 10.24294/jpse.v6i1.3260

34. Li Y, Xu G, Cui C, et al. Flexible and Semitransparent Organic Solar Cells. Advanced Energy Materials. 2017; 8(7). doi: 10.1002/aenm.201701791

35. Cheng P, Zhan X. Stability of organic solar cells: challenges and strategies. Chemical Society Reviews. 2016; 45(9): 2544-2582. doi: 10.1039/c5cs00593k

36. Rafique S, Abdullah SM, Sulaiman K, et al. Fundamentals of bulk heterojunction organic solar cells: An overview of stability/degradation issues and strategies for improvement. Renewable and Sustainable Energy Reviews. 2018; 84: 43-53. doi: 10.1016/j.rser.2017.12.008

37. Djurišić AB, Liu FZ, Tam HW, et al. Perovskite solar cells - An overview of critical issues. Progress in Quantum Electronics. 2017; 53: 1-37. doi: 10.1016/j.pquantelec.2017.05.002

38. Rajeswari R, Mrinalini M, Prasanthkumar S, et al. Emerging of Inorganic Hole Transporting Materials For Perovskite Solar Cells. The Chemical Record. 2017; 17(7): 681-699. doi: 10.1002/tcr.201600117

39. Wenham SR, Green MA. Silicon solar cells. Progress in Photovoltaics: Research and Applications. 1996; 4(1): 3-33.

40. Sopian K, Cheow S, Zaidi, S. An overview of crystalline silicon solar cell technology: Past, present, and future. AIP Conference Proceedings, 2017.

41. Green MA, Dunlop ED, Hohl‐Ebinger J, et al. Solar cell efficiency tables (version 56). Progress in Photovoltaics: Research and Applications. 2020; 28(7): 629-638. doi: 10.1002/pip.3303

42. Khan S, Ullah I, Khan H, et al. Green synthesis of AgNPs from leaves extract of Saliva Sclarea, their characterization, antibacterial activity, and catalytic reduction ability. Zeitschrift für Physikalische Chemie. 2024; 0(0). doi: 10.1515/zpch-2023-0363

43. Khan S, Ullah I, Rahman MU, et al. Inorganic-polymer composite electrolytes: basics, fabrications, challenges and future perspectives. Reviews in Inorganic Chemistry. 2024; 0(0). doi: 10.1515/revic-2023-0030

44. Nozik AJ. Quantum dot solar cells. Physica E: Low-dimensional Systems and Nanostructures. 2002; 14(1-2): 115-120.

45. Najmi L, Hu Z. Effects of Topological Parameters on Thermal Properties of Carbon Nanotubes via Molecular Dynamics Simulation. Journal of Composites Science. 2024; 8(1): 37. doi: 10.3390/jcs8010037

46. Pagliaro M, Ciriminna R, Palmisano G. Flexible Solar Cells. ChemSusChem. 2008; 1(11): 880-891. doi: 10.1002/cssc.200800127

47. Najmi L, Zebarjad SM, Janghorban K. Effects of Carbon Nanotubes on the Compressive and Flexural Strength and Microscopic Structure of Epoxy Honeycomb Sandwich Panels. Polymer Science, Series B. 2023; 1-10.

48. Najmi L, Hu Z. Review on Molecular Dynamics Simulations of Effects of Carbon Nanotubes (CNTs) on Electrical and Thermal Conductivities of CNT-Modified Polymeric Composites. Journal of Composites Science. 2023; 7(4): 165. doi: 10.3390/jcs7040165

49. Li X, Li P, Wu Z, et al. Review and perspective of materials for flexible solar cells. Materials Reports: Energy. 2021; 1(1): 100001. doi: 10.1016/j.matre.2020.09.001




DOI: https://doi.org/10.24294/jpse.v7i1.4276

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Shahab Khan, Inam Ullah, Salman Khan, Sanila Ajmal, Najmus Saqib, Faizan Ur Rahman, Shahid Ali

License URL: https://creativecommons.org/licenses/by/4.0/

This site is licensed under a Creative Commons Attribution 4.0 International License.