Preparation of defect free TFC FO membranes using robust and highly porous ceramic substrate

Jincai Su, Yanyan Wei, Hui Li

Article ID: 413
Vol 5, Issue 1, 2022

VIEWS - 1233 (Abstract) 399 (PDF)

Abstract


In this study, robust and defect-free thin film composite (TFC) forward osmosis (FO) membranes have been successfully fabricated using ceramic hollow fibers as the substrate. Polydopamine (PDA) coating under controlled conditions is effective in reducing the surface pores of the substrate and making the substrate smooth enough for interfacial polymerization. The pure water permeability (A), solute permeability (B), and structural parameter (S) of the resultant FO membrane are 0.854 L·m–2·h−1·bar−1 (LMH/Bar), 0.186 L·m–2·h−1 (LMH), and 1720 µm, respectively. The water flux and reverse draw solute flux are measured using NaCl and proprietary ferric sodium citrate (FeNaCA) draw solutions at low and high osmotic pressure ranges. As the osmotic pressure increases, a higher water flux is obtained, but its increase is not directly proportional to the increase in the osmotic pressure. At the membrane surface, the effect of dilutive concentration polarization is much less serious for FeNaCA-draw solutions. At an osmotic pressure of 89.6 bar, the developed TFC membrane generates water fluxes of 11.5 and 30.0 LMH using NaCl and synthesized FeNaCA draw solutions. The corresponding reverse draw solute flux is 7.0 g·m–2·h−1 (gMH) for NaCl draw solution, but it is not detectable for FeNaCA draw solution. This means that the developed TFC FO membranes are defect-free and their surface pores are at the molecular level. The performance of the developed TFC FO membranes is also demonstrated for the enrichment of BSA protein.


Keywords


defect-free; thin film composite; forward osmosis; reverse draw solute flux; protein enrichment

Full Text:

PDF


References


1. Hoover LA, Phillip WA, Tiraferri A, et al. Forward with osmosis: emerging applications for greater sustainability. Environmental Science & Technology 2011; 45(23): 9824–9830. doi: 10.1021/es202576h

2. McGinnis RL, Elimelech M. Global challenges in energy and water supply: The promise of engineered osmosis. Environmental Science & Technology 2008; 42(23): 8625–8629. doi: 10.1021/es800812m

3. Achilli A, Cath TY, Marchand EA, et al. The forward osmosis membrane bioreactor: A low fouling alternative to MBR processes. Desalination 2009; 239(1–3): 10–21. doi: 10.1016/j.desal.2008.02.022

4. Klaysom C, Cath TY, Depuydt T, et al. Forward and pressure retarded osmosis: potential solutions for global challenges in energy and water supply. Chemical Society Reviews 2013; 42(16): 6959. doi: 10.1039/c3cs60051c

5. Arena JT, Manickam SS, Reimund KK, et al. Characterization and performance relationships for a commercial thin film composite membrane in forward osmosis desalination and pressure retarded osmosis. Industrial & Engineering Chemistry Research 2015; 54(45): 11393–11403. doi: 10.1021/acs.iecr.5b02309

6. Cui Y, Ge Q, Liu XY, et al. Novel forward osmosis process to effectively remove heavy metal ions. Journal of Membrane Science 2014; 467: 188–194. doi: 10.1016/j.memsci.2014.05.034

7. McCutcheon JR, McGinnis RL, Elimelech M. A novel ammonia—Carbon dioxide forward (direct) osmosis desalination process. Desalination 2005; 174(1): 1–11. doi: 10.1016/j.desal.2004.11.002

8. Yang Q, Wang KY, Chung TS. A novel dual-layer forward osmosis membrane for protein enrichment and concentration. Separation and Purification Technology 2009; 69(3): 269–274. doi: 10.1016/j.seppur.2009.08.002

9. Ge Q, Chung TS. Oxalic acid complexes: promising draw solutes for forward osmosis (FO) in protein enrichment. Chemical Communications 2015; 51(23): 4854–4857. doi: 10.1039/c5cc00168d

10. Garcia-Castello EM, McCutcheon JR, Elimelech M. Performance evaluation of sucrose concentration using forward osmosis. Journal of Membrane Science 2009; 338(1–2): 61–66. doi: 10.1016/j.memsci.2009.04.011

11. Ge Q, Ling M, Chung TS. Draw solutions for forward osmosis processes: Developments, challenges, and prospects for the future. Journal of Membrane Science 2013; 442: 225–237. doi: 10.1016/j.memsci.2013.03.046

12. Karan S, Jiang Z, Livingston AG. Sub–10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation. Science 2015; 348(6241): 1347–1351. doi: 10.1126/science.aaa5058

13. Su J, Yang Q, Teo JF, et al. Cellulose acetate nanofiltration hollow fiber membranes for forward osmosis processes. Journal of Membrane Science 2010; 355(1–2): 36–44. doi: 10.1016/j.memsci.2010.03.003

14. Zhang S, Wang KY, Chung TS, et al. Well-constructed cellulose acetate membranes for forward osmosis: Minimized internal concentration polarization with an ultra-thin selective layer. Journal of Membrane Science 2010; 360(1–2): 522–535. doi: 10.1016/j.memsci.2010.05.056

15. Wang R, Shi L, Tang CY, et al. Characterization of novel forward osmosis hollow fiber membranes. Journal of Membrane Science 2010; 355(1–2): 158–167. doi: 10.1016/j.memsci.2010.03.017

16. Yip NY, Tiraferri A, Phillip WA, et al. High performance thin-film composite forward osmosis membrane. Environmental Science & Technology 2010; 44(10): 3812–3818. doi: 10.1021/es1002555

17. Ong RC, Chung TS. Fabrication and positron annihilation spectroscopy (PAS) characterization of cellulose triacetate membranes for forward osmosis. Journal of Membrane Science 2012; 394–395: 230–240. doi: 10.1016/j.memsci.2011.12.046

18. Han G, Zhang S, Li X, et al. Thin film composite forward osmosis membranes based on polydopamine modified polysulfone substrates with enhancements in both water flux and salt rejection. Chemical Engineering Science 2012; 80: 219–231. doi: 10.1016/j.ces.2012.05.033

19. Li X, Zhang S, Fu F, et al. Deformation and reinforcement of thin-film composite (TFC) polyamide-imide (PAI) membranes for osmotic power generation. Journal of Membrane Science 2013; 434: 204–217. doi: 10.1016/j.memsci.2013.01.049

20. Holt JK, Park HG, Wang Y, et al. Fast mass transport through sub-2-nanometer carbon nanotubes. Science 2006; 312(5776): 1034–1037. doi: 10.1126/science.1126298

21. Elimelech M, Phillip WA. The future of seawater desalination: Energy, technology, and the environment. Science 2011; 333(6043): 712–717. doi: 10.1126/science.1200488

22. Han G, Cheng ZL, Chung TS. Thin-film composite (TFC) hollow fiber membrane with double-polyamide active layers for internal concentration polarization and fouling mitigation in osmotic processes. Journal of Membrane Science 2017; 523: 497–504. doi: 10.1016/j.memsci.2016.10.022

23. Cath T, Childress A, Elimelech M. Forward osmosis: Principles, applications, and recent developments. Journal of Membrane Science 2006; 281(1–2): 70–87. doi: 10.1016/j.memsci.2006.05.048

24. Ge Q, Fu F, Chung TS. Ferric and cobaltous hydroacid complexes for forward osmosis (FO) processes. Water Research 2014; 58: 230–238. doi: 10.1016/j.watres.2014.03.024

25. Tiraferri A, Yip NY, Straub AP, et al. A method for the simultaneous determination of transport and structural parameters of forward osmosis membranes. Journal of Membrane Science 2013; 444: 523–538. doi: 10.1016/j.memsci.2013.05.023

26. Zhang S, Wang P, Fu X, et al. Sustainable water recovery from oily wastewater via forward osmosis-membrane distillation (FO-MD). Water Research 2014; 52: 112–121. doi: 10.1016/j.watres.2013.12.044

27. Han G, Chan SS, Chung TS. Forward osmosis (FO) for water reclamation from emulsified oil/water solutions: Effects of membrane and emulsion characteristics. ACS Sustainable Chemistry & Engineering 2016; 4(9): 5021–5032. doi: 10.1021/acssuschemeng.6b01402

28. Su J, Chung TS, Helmer BJ, et al. Understanding of low osmotic efficiency in forward osmosis: Experiments and modeling. Desalination 2013; 313: 156–165. doi: 10.1016/j.desal.2012.12.022

29. Ge Q, Su J, Amy GL, et al. Exploration of polyelectrolytes as draw solutes in forward osmosis processes. Water Research 2012; 46(4): 1318–1326. doi: 10.1016/j.watres.2011.12.043

30. Yasukawa M, Mishima S, Shibuya M, et al. Preparation of a forward osmosis membrane using a highly porous polyketone microfiltration membrane as a novel support. Journal of Membrane Science 2015; 487: 51–59. doi: 10.1016/j.memsci.2015.03.043

31. Su J, Chung TS. Sublayer structure and reflection coefficient and their effects on concentration polarization and membrane performance in FO processes. Journal of Membrane Science 2011; 376(1–2): 214–224. doi: 10.1016/j.memsci.2011.04.031

32. Su J, Chung TS, Helmer BJ, et al. Enhanced double-skinned FO membranes with inner dense layer for wastewater treatment and macromolecule recycle using Sucrose as draw solute. Journal of Membrane Science 2012; 396: 92–100. doi: 10.1016/j.memsci.2012.01.001

33. Barrow CJ, Yasuda A, Kenny PT, Zagorski MG. Solution conformations and aggregational properties of synthetic amyloid β-peptides of Alzheimer’s disease: Analysis of circular dichroism spectra. Journal of Molecular Biology 1992; 225(4): 1075–1093. doi: 10.1016/0022-2836(92)90106-T

34. Kelly SM, Jess TJ, Price NC. How to study proteins by circular dichroism. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2005; 1751(2): 119–139. doi: 10.1016/j.bbapap.2005.06.005

35. Johnson CM, Fersht AR. Protein stability as a function of denaturant concentration: The thermal stability of barnase in the presence of urea. Biochemistry 1995; 34(20): 6795–6804. doi: 10.1021/bi00020a026




DOI: https://doi.org/10.24294/jpse.v1i4.413

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Jincai Su, Yanyan Wei, Hui Li

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This site is licensed under a Creative Commons Attribution 4.0 International License.