Molecular dynamic study of abrasive wear, viscosity and moduli of UDMA: A component of dental composite
Vol 6, Issue 1, 2023
VIEWS - 430 (Abstract) 82 (PDF)
Abstract
Among the dental composites, Urethane Dimethacrylate (UDMA) is commonly used as a component in treating oral complications. Many molecular dynamics approaches are used to understand the behaviour of the material at room temperature as well as at higher temperatures to get a better insight after comparison with experimental values at the atomic level. There are three critical physical properties associated with these components, like abrasive wear, viscosity, and moduli, which play an essential role in determining the treatment and can be computed using the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS), the general-purpose quantum chemistry program package (ORCA), and the General Utility Lattice Program (GULP) molecular dynamics methods. A radial distribution function plot is generated using visual molecular dynamics (VMD) for UDMA and BisGMA. A comparison of these parameters with BisGMA, another component of dental composites, along with experimental results, is carried out in the present investigation. Further, since radiation also matters for settling the materials in dental treatment, we have computed absorption spectra from 200 nm to 800 nm using LAMMPS/ORCA.
Keywords
Full Text:
PDFReferences
1. Khanal M, Morrison R. Chapter 4: Numerical simulation of abrasion of particles. In: Adamiak M (editor). Abrasion Resistance of Materials. IntechOpen; 2012. pp. 1–24.
2. Eder SJ, Bianchi D, Cihak-Bayr U, Gkagkas K. Methods for atomistic abrasion simulations of laterally periodic polycrystalline substrates with fractal surfaces. Computer Physics Communications 2017; 212: 100–112. doi: 10.1016/j.cpc.2016.10.017
3. Krause WR, Park HS, Straup RA. Mechanical properties of BE-GMA resin short glass fiber composites. Journal of Biomedical Materials Research 1989; 23(10): 1195–1211. doi: 10.1002/jbm.820231008
4. Rameshbabu AP, Mohanty S, Bankoti K, et al. Effect of alumina, silk and ceria short fibers in reinforcement of Bis-GMA/TEGDMA dental resin. Composites Part B: Engineering 2015; 70: 238–246. doi: 10.1016/j.compositesb.2014.11.019
5. Algellai AA, Tomić N, Vuksanovi´c MM, et al. Adhesion testing of composites based on Bis-GMA/TEGDMA monomers reinforced with alumina based fillers on brass substrate. Composites Part B: Engineering 2018; 140: 164–173. doi: 10.1016/j.compositesb.2017.12.034
6. Ferracane JL. Current trends in dental composites. Critical Reviews in Oral Biology and Medicine 1995; 6(4): 302–318. doi: 10.1177/10454411950060040301
7. Chen MH. Update on dental nanocomposites. Journal of Dental Research 2010; 89(6): 549–560. doi: 10.1177/0022034510363765
8. Karabela MM, Sideridou ID. Synthesis and study of properties of dental resin composites with different nanosilica particles size. Dental Materials 2011; 27(8): 825–835. doi: 10.1016/j.dental.2011.04.008
9. Abdolhosseini Qomi MJ, Krakowiak KJ, Bauchy M, et al. Combinatorial molecular optimization of cement hydrates. Nature Communications 2014; 5: 4960. doi: 10.1038/ncomms5960
10. Chen G, Li A, Liu H, et al. Mechanical and dynamic properties of resin blend and composite systems: A molecular dynamics study. Composite Structures 2018; 190: 160–168. doi: 10.1016/j.compstruct.2018.02.001
11. Cho K, Sul JH, Stenzel MH, et al. Experimental cum computational investigation on interfacial and mechanical behavior of short glass fiber reinforced dental composites. Composites Part B: Engineering 2020; 200: 108294. doi: 10.1016/j.compositesb.2020.108294
12. Podea P, Prejmerean C, Surducan M, Silaghi-Dumitrescu R. Computational analysis of dental material monomer Bisphenolglycidyldimethacrylate (BisGMA). Journal of Optoelectronics and Advanced Materials 2013; 15(9–10): 1095–1100.
13. Craig RG, Welker D, Rothaut J, et al. Dental materials. In: Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH; 2002.
14. Giltrow JP. A relationship between abrasive wear and the cohesive energy of materials. Wear 1970; 15(1): 71–78. doi: 10.1016/0043-1648(70)90187-0
15. Mo YF, Yang CL, Xing YF, et al. Effects of silica surface on the ordered orientation of polyethylene: A molecular dynamics study. Applied Surface Science 2014; 311: 273–278. doi: 10.1016/j.apsusc.2014.05.055
16. Yang L, Yang W, Liu X, et al. Molecular dynamics simulation study on the structure and properties of polyimide/silica hybrid materials. Journal of Applied Polymer Science 2019; 136(16): 47335–47339. doi: 10.1002/app.47335
17. Li B, Tian L, Pan L, Li J. Molecular dynamics investigation of structural and mechanical properties of silica nanorod reinforced dental resin composites. Journal of the Mechanical Behavior of Biomedical Materials 2021; 124: 104838. doi: 10.1016/j.jmbbm.2021.104830
18. Kuzmina EV, Karaseva EV, Kolosnitsyn VS. Molecular dynamics studies of the physicochemical properties and structure of the 1 M LiClO4 solution in sulfolane. Russian Journal of Physical Chemistry A 2022; 96: 115–124. doi: 10.1134/S0036024422010174
19. Yiannourakou M, Ungerer P, Leblanc B, et al. Molecular simulation of adsorption in microporous materials. Oil & Gas Science and Technology–Revue d’IFP Energies Nouvelles 2013; 68(6): 951–1113. doi: 10.2516/ogst/2013134
20. Fakhardji W, Gustafsson M. Molecular dynamics simulations of collision-induced absorption: Implementation in LAMMPS. Journal of Physics: Conference Series 2017; 810: 012031–012035. doi: 10.1088/1742-6596/810/1/012031
21. Hossain D, Tschopp MA, Ward DK, et al. Molecular dynamics simulations of deformation mechanisms of amorphous polyethylene. Polymer 2010; 51(25): 6071–6083. doi: 10.1016/j.polymer.2010.10.009
22. Brown D, Clarke JHR. Molecular dynamics simulation of an amorphous polymer under tension. 1. phenomenology. Macromolecules 1991; 24(8): 2075–2082. doi: 10.1021/ma00008a056
23. Pimpton S. Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics 1995; 117(1): 1–19. doi: 10.1006/jcph.1995.1039
24. Thompson AP, Aktulga HM, Berger R, et al. LAMMPS—A flexible simulation tool for particle-based materials modeling at the atomic, meso and continuum scales. Computer Physics Communications 2022; 271: 10817. doi: 10.1016/j.cpc.2021.108171
25. Gale JD. GULP: A computer program for the symmetry adapted simulation of solids. Journal of the Chemical Society, Faraday Transactions 1997; 93(4): 629–637. doi: 10.1039/A606455H
26. Gale JD, Rohl AL. The General Utility Lattice Program (GULP). Molecular Simulation 2003; 29(5): 291–341. doi: 10.1080/0892702031000104887
27. Szczesion-Wlodarczyk A, Domarecka M, Kopacz K, et al. An evaluation of the properties of urethane dimethacrylate-based dental resins. Materials 2021; 14(11): 2727–2732. doi: 10.3390/ma14112727
28. Shi Y, Ren P, Schnieders M, Piquemal JP. Polarizable force fields for biomolecular modeling. In: Parrill AL, Lipkowitz KB (editors). Reviews in Computational Chemistry, 28th ed. Springer; 2014.
29. Jorgensen WL, Tirado-Rives J. Potential energy functions for atomic-level simulations of water and organic and biomolecular systems. Proceedings of the National Academy of Sciences 2005; 102(19): 6665–6670. doi: 10.1073/pnas.0408037102
30. Dodda LS, Vilseck JZ, Tirado-Rives J, Jorgensen WL. 1.14*CM1A-LBCC: Localized bond-charge corrected CM1A charges for condensed-phase simulations. The Journal of Physical Chemistry B 2017; 121(15): 3864–3870. doi: 10.1021/acs.jpcb.7b00272
31. Dodda LS, Cabeza de Vaca I, Tirado-Rives J, Jorgensen WL. LigParGen web server: An automatic OPLS-AA parameter generator for organic ligands. Nucleic Acids Research 2017; 45: W331–W336. doi: 10.1093/nar/gkx312
32. Humphrey W, Dalke A, Schulten K. VMD: Visual molecular dynamics. Journal of Molecular Graphics 1996; 14(1): 33–38. doi: 10.1016/0263-7855(96)00018-5
33. Lagocka R, Mazurek-Mochol M, Jakubowska K, et al. Analysis of base monomer elution from 3 flowable bulk-fill composite resins using high performance liquid chromatography (HPLC). Medical Science Monitor: International Medical Journal of Experimental and Clinical Research 2018; 24: 4679–4690. doi: 10.12659/MSM.907390
34. Silikas N, Watts DC. Rheology of urethane dimethacrylate and diluent formulations. Dental Materials 1999; 15(4): 257–261. doi: 10.1016/S0109-5641(99)00043-3
35. Gajewski VES, Pfeifer CS, Froes-salgado NRG, et al. Monomers used in resin composites: Degree of conversion, mechanical properties and water sorption/solubility. Brazilian Dental Journal 2012; 23(5): 508–614. doi: 10.1590/s0103-64402012000500007
36. Sefiddashti MHM, Khajehnobar MB, Edwards BJ, Khomami B. High-fidelity scaling relationships for determining dissipative particle dynamics parameters from atomistic molecular dynamics simulations of polymeric liquids. Scientific Reports 2020; 10: 4458. doi: 10.1038/s41598-020-61374-8
37. Humphrey W, Dalke A, Schulten K. VMD: Visual molecular dynamics. Journal of Molecular Graphics 1996; 14(1): 33–38. doi: 10.1016/0263-7855(96)00018-5
38. Nelson M, Humphrey W, Gursoy A, et al. NAMD: A parallel, object-oriented molecular dynamics program. The International Journal of High Performance Computing Applications 1996; 10(4): 251–268. doi: 10.1177/109434209601000401
39. Fugolin AP, Dobson A, Ferracane JL, Pfeifer CS. Effect of residual solvent on performance of acrylamide-containing dental materials. Dental Materials 2019; 35(10): 1378–1387. doi: 10.1016/j.dental.2019.07.003
40. Maurya M, Thejas Urs G, Kumaraswamy SR, Somashekar R. Computational study of BisGMA: A component of dental resin material. International Journal of Modern Physics C 2023. doi: 10.1142/S0129183124500669
DOI: https://doi.org/10.24294/jpse.v6i1.2360
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 M. Maurya, H. Somashekarappa, M. B. Nandaprakash, S. R. Kumaraswamy, K. Hemalatha, R. Somashekar
License URL: https://creativecommons.org/licenses/by-nc/4.0
This site is licensed under a Creative Commons Attribution 4.0 International License.