Hybrid nanodiamond nanoadditives in polymers—Contemporary marks and fruitions
Vol 8, Issue 1, 2025
(Abstract)
Abstract
The current manuscript overviews the potential of inimitable zero dimensional carbon nanoentities, i.e., nanodiamonds, in the form of hybrid nanostructures with allied nanocarbons such as graphene and carbon nanotube. Accordingly, two major categories of hybrid nanodiamond nanoadditives have been examined for nanocompositing, including nanodiamond-graphene or nanodiamond/graphene oxide and nanodiamond/carbon nanotubes. These exceptional nanodiamond derived bifunctional nanocarbon nanostructures depicted valuable structural and physical attributes (morphology, electrical, mechanical, thermal, etc.) owing to the combination of intrinsic features of nanodiamonds with other nanocarbons. Consequently, as per literature reported so far, noteworthy multifunctional hybrid nanodiamond-graphene, nanodiamond/graphene oxide, and nanodiamond/carbon nanotube nanoadditives have been argued for characteristics and potential advantages. Particularly, these nanodiamond derived hybrid nanoparticles based nanomaterials seem deployable in the fields of electromagnetic radiation shielding, electronic devices like field effect transistors, energy storing maneuvers namely supercapacitors, and biomedical utilizations for wound healing, tissue engineering, biosensing, etc. Nonetheless, restricted research traced up till now on hybrid nanodiamond-graphene and nanodiamond/carbon nanotube based nanocomposites, therefore, future research appears necessary for further precise design varieties, large scale processing, and advanced technological progresses.
Keywords
Full Text:
PDFReferences
1. de Souza IAM, de Morais EA, Geraldo V. Waterproofing materials by incorporating as grown carbon nanotubes into paint. Journal of Polymer Science and Engineering. 2024; 7(2): 6758. doi: 10.24294/jpse.v7i2.6758
2. Kausar A, Ahmad I. Footsteps of graphene filled polymer nanocomposites towards efficient membranes—Present and future. Journal of Polymer Science and Engineering. 2024; 7(1): 4978. doi: 10.24294/jpse.v7i1.4978
3. Kausar A. Polymer/nanodiamond nanocomposites: Fundamentals, fabrication and characteristics. In: Polymer/nanodiamond Nanocomposites. Elsevier; 2024. pp. 21–44.
4. Lioy PJ, Weisel CP, Millette JR, et al. Characterization of the dust/smoke aerosol that settled east of the World Trade Center (WTC) in lower Manhattan after the collapse of the WTC 11 September 2001. Environmental Health Perspectives. 2002; 110(7): 703–714. doi: 10.1289/ehp.02110703
5. Furberg A, Arvidsson R. Life Cycle Assessment of Synthetic Nanodiamond and Diamond Film Production. ACS Sustainable Chemistry & Engineering. 2023; 12(1): 365–374. doi: 10.1021/acssuschemeng.3c05854
6. Kumar A, Singh G. Surface modification of Ti6Al4V alloy via advanced coatings: Mechanical, tribological, corrosion, wetting, and biocompatibility studies. Journal of Alloys and Compounds. 2024; 989: 174418. doi: 10.1016/j.jallcom.2024.174418
7. Muraleedharan A, Acharya S, Kumar R. Recent Updates on Diverse Nanoparticles and Nanostructures in Therapeutic and Diagnostic Applications with Special Focus on Smart Protein Nanoparticles: A Review. ACS Omega. 2024; 9(42): 42613–42629. doi: 10.1021/acsomega.4c05037
8. Abdullah Md, Ahmed I, Islam MA, et al. Recent developments and diverse applications of high melting point materials. Results in Engineering. 2024; 22: 102376. doi: 10.1016/j.rineng.2024.102376
9. Yamada Y, Hasunuma Y, Yamagishi Y, et al. Adsorption of lysozyme onto the single-particle layer of the organo-modified nanodiamond and its functional maintenance at high temperatures. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2024; 692: 133950. doi: 10.1016/j.colsurfa.2024.133950
10. Fiekkies JTR, Fourie E, Erasmus E. Cisplatin-functionalized nanodiamonds: preparation and characterization, with potential antineoplastic application. Applied Nanoscience. 2021; 11(8): 2235–2245. doi: 10.1007/s13204-021-01955-9
11. Zheng Q, Shi X, Jiang J, et al. Unveiling the complexity of nanodiamond structures. Proceedings of the National Academy of Sciences. 2023; 120(23): e2301981120. doi: 10.1073/pnas.2301981120
12. Sacco LN, Vollebregt S. Overview of Engineering Carbon Nanomaterials Such As Carbon Nanotubes (CNTs), Carbon Nanofibers (CNFs), Graphene and Nanodiamonds and Other Carbon Allotropes inside Porous Anodic Alumina (PAA) Templates. Nanomaterials. 2023; 13(2): 260. doi: 10.3390/nano13020260
13. Dubey KA, Mondal RK, Bhardwaj YK. Graphene assisted enhancement in the cyclic electromechanical properties of polyolefin based multiphasic conducting nano carbon black nanocomposites. Radiation Physics and Chemistry. 2023; 214: 111308. doi: 10.1016/j.radphyschem.2023.111308
14. Cieślik M, Susik A, Banasiak M, et al. Tailoring diamondised nanocarbon-loaded poly(lactic acid) composites for highly electroactive surfaces: extrusion and characterisation of filaments for improved 3D-printed surfaces. Microchimica Acta. 2023; 190(9): 370. doi: 10.1007/s00604-023-05940-7
15. John KI, Solomon A, Adeleye AT, et al. Nanocarbon Composites: Synthesis, Characterization, and Applications in Water Purification. In: Heterogeneous Nanocatalysis for Energy and Environmental Sustainability. John Wiley & Sons; 2022. pp. 17–36.
16. Pavía M, Emo M, Estellé P, et al. Controlled structural damaging of multiwalled carbon nanotubes and graphene nanoplatelets by oxidation for stable nanofluids with enhanced thermal conductivity. Journal of Molecular Liquids. 2023; 390: 123194. doi: 10.1016/j.molliq.2023.123194
17. Hu K, Zhou P, Yang Y, et al. The Nature of Molecular Hybridizations in Nanodiamonds for Boosted Fe(Ⅲ)/Fe(Ⅱ) Circulation. Environmental Science & Technology. 2024; 58(46): 20665–20675. doi: 10.1021/acs.est.4c04733
18. Stehlik S, Szabo O, Shagieva E, et al. Electrical and colloidal properties of hydrogenated nanodiamonds: Effects of structure, composition and size. Carbon Trends. 2024; 14: 100327. doi: 10.1016/j.cartre.2024.100327
19. Bower C, Zhou O, Zhu W, et al. Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition. Applied Physics Letters. 2000; 77(17): 2767–2769. doi: 10.1063/1.1319529
20. Amans D, Diouf M, Lam J, et al. Origin of the nano-carbon allotropes in pulsed laser ablation in liquids synthesis. Journal of Colloid and Interface Science. 2017; 489: 114–125. doi: 10.1016/j.jcis.2016.08.017
21. Ma J, Zhao J, Lin Y, et al. Study on Tamped Spherical Detonation-Induced Dynamic Responses of Rock and PMMA Through Mini-chemical Explosion Tests and a Four-Dimensional Lattice Spring Model. Rock Mechanics and Rock Engineering. 2023; 56(10): 7357–7375. doi: 10.1007/s00603-023-03426-9
22. Sreeramareddygari M, Sureshkumar K, Thippeswamy R, et al. Various properties of zero-dimensional carbon nanomaterials–reinforced polymeric matrices. In: Zero-Dimensional Carbon Nanomaterials. Elsevier; 2024. pp. 357–384.
23. Priyadarshni N, Singh R, Mishra MK. Nanodiamonds: Next generation nano-theranostics for cancer therapy. Cancer Letters. 2024; 587: 216710. doi: 10.1016/j.canlet.2024.216710
24. Kirschbaum T, Wang X, Bande A. Ground and excited state charge transfer at aqueous nanodiamonds. Journal of Computational Chemistry. 2024; 45(11): 710–718. doi: 10.1002/jcc.27279
25. Jiao M, Sun X, Li Z, et al. Nanodiamonds assisted synthesis of porous hollow carbon microsphere as an efficient anode in lithium-ion battery over 13000 cycles at 20 C. Journal of Power Sources. 2024; 613: 234804. doi: 10.1016/j.jpowsour.2024.234804
26. Marin D, Kralj S, Stehlik S, Marchesan S. Nanocomposite Hydrogels from Nanodiamonds and a Self-Assembling Tripeptide. Chemistry—A European Journal. 2024.
27. Mirhosseini SS, Mahboubi F, Azadfalah M. Effect of different plasma nitriding durations on the tribological characteristics of nickel-boron-nanodiamond electroless nanocomposite coatings. Surface and Coatings Technology. 2024; 476: 130181. doi: 10.1016/j.surfcoat.2023.130181
28. Gaikwad M, Suryawanshi A, Mazahir F, Yadav AK. Introduction: an overview of the multifunctional nanocomposites. In: Multifunctional Nanocomposites for Targeted Drug Delivery in Cancer Therapy. Academic Press; 2024. pp. 1–34.
29. Ding H, Pan Z, Loh YM, et al. Effects of Nano-Diamond-Coated Milling Bits on Cutting Dental Zirconia. Coatings. 2024; 14(4): 473. doi: 10.3390/coatings14040473
30. Kar DK, V P, Si S, et al. Carbon Dots and Their Polymeric Nanocomposites: Insight into Their Synthesis, Photoluminescence Mechanisms, and Recent Trends in Sensing Applications. ACS Omega. 2024; 9(10): 11050–11080. doi: 10.1021/acsomega.3c07612
31. Shrestha R, Ban S, Baby BT, et al. Synthesis, properties, and overview of nanodiamonds. In: Diamane: Fabrication, properties and new advances in 2D diamond. Iop Publishing Ltd; 2024. pp. 8–1–8–25.
32. Dutta T, Llamas-Garro I, Velázquez-González JS, et al. A new generation of satellite sensors based on graphene and carbon nanotubes: A Review. IEEE Sensors Journal. 2024; 24(20): 31645–31657. doi: 10.1109/jsen.2024.3440499
33. Abdelwahab A, Farghali AA, Allah AE. Synergy between iron oxide sites and nitrogen-doped carbon xerogel/diamond matrix for boosting the oxygen reduction reaction. Nanoscale Advances. 2022; 4(3): 837–848. doi: 10.1039/d1na00776a
34. Hao CY, Zhan Z, Pantaleón PA, et al. Robust flat bands in twisted trilayer graphene moiré quasicrystals. Nature Communications. 2024; 15(1): 8437. doi: 10.1038/s41467-024-52784-7
35. Semenov KN, Ageev SV, Kukaliia ON, et al. Application of carbon nanostructures in biomedicine: realities, difficulties, prospects. Nanotoxicology. 2024; 18(2): 181–213. doi: 10.1080/17435390.2024.2327053
36. Lv H, Yao Y, Yuan M, et al. Functional nanoporous graphene superlattice. Nature Communications. 2024; 15(1): 1295. doi: 10.1038/s41467-024-45503-9
37. Crapnell RD, Banks CE. Introduction to Graphene. In: The Handbook of Graphene Electrochemistry. Springer; 2024. pp. 1–23.
38. Galvagno E, Tartaglia E, Stratigaki M, et al. Present Status and Perspectives of Graphene and Graphene-related Materials in Cultural Heritage. Advanced Functional Materials. 2024; 34(13): 2313043. doi: 10.1002/adfm.202313043
39. Brusko V, Khannanov A, Rakhmatullin A, Dimiev AM. Unraveling the infrared spectrum of graphene oxide. Carbon. 2024; 229: 119507. doi: 10.1016/j.carbon.2024.119507
40. Ribeiro AC, Piske BE, Wiggers VR, Neiva EGC. Exploring Hummers Approach for Graphene Oxide Synthesis and Industrial Viability. International Journal of Chemical Engineering and Applications. 2024; 15(2). doi: 10.18178/ijcea.2024.15.2.814
41. Kiranakumar HV, Thejas R, Naveen CS, et al. A review on electrical and gas-sensing properties of reduced graphene oxide-metal oxide nanocomposites. Biomass Conversion and Biorefinery. 2022; 14(12): 12625–12635. doi: 10.1007/s13399-022-03258-7
42. Kurapati SK, Reddy NM, Sujithra R, et al. Nanomaterials and Nanostructures in Additive Manufacturing: Properties, Applications, and Technological Challenges. In: Nanotechnology-Based Additive Manufacturing. Wiley-VCH; 2023. pp. 53–102.
43. Lalire T, Longuet C, Taguet A. Electrical properties of graphene/multiphase polymer nanocomposites: A review. Carbon. 2024; 225: 119055. doi: 10.1016/j.carbon.2024.119055
44. Dananjaya V, Marimuthu S, Yang R, et al. Synthesis, properties, applications, 3D printing and machine learning of graphene quantum dots in polymer nanocomposites. Progress in Materials Science. 2024; 144: 101282. doi: 10.1016/j.pmatsci.2024.101282
45. Ahmed W, Gul S, Awais M, et al. A review: novel nanohybrids of epoxy/polyamide with carbon nanotube/nano-diamond. Polymer-Plastics Technology and Materials. 2021; 60(6): 579–600. doi: 10.1080/25740881.2020.1819314
46. Su X, Wang R, Li X, et al. A comparative study of polymer nanocomposites containing multi-walled carbon nanotubes and graphene nanoplatelets. Nano Materials Science. 2022; 4(3): 185–204. doi: 10.1016/j.nanoms.2021.08.003
47. Shoueir K, Mohanty A, Janowska I. Industrial molasses waste in the performant synthesis of few-layer graphene and its Au/Ag nanoparticles nanocomposites. Photocatalytic and supercapacitance applications. Journal of Cleaner Production. 2022; 351: 131540. doi: 10.1016/j.jclepro.2022.131540
48. Boumeriame H, Machado BF, Moura NMM, et al. Graphitic carbon nitride/few-layer graphene heterostructures for enhanced visible-LED photocatalytic hydrogen generation. International Journal of Hydrogen Energy. 2022; 47(61): 25555–25570. doi: 10.1016/j.ijhydene.2022.05.285
49. Kausar A. Advances in Polymeric Nanocomposites Incorporating Graphene–Fullerene and Graphene Oxide—Fullerene Hybrids. In: All-carbon Composites and Hybrids. Royal Society of Chemistry; 2021. pp. 255–277.
50. Mateeva J, Yoleva A., Djambazov S, Martinov B. Nanocomposite bifillers based on graphene oxide and organobentonite. Journal of Chemical Technology and Metallurgy. 2022; 57(1): 132–136.
51. Nimbagal V, Banapurmath NR, Sajjan AM, et al. Studies on Hybrid Bio-Nanocomposites for Structural Applications. Journal of Materials Engineering and Performance. 2021; 30(9): 6461–6480. doi: 10.1007/s11665-021-05843-9
52. Trofimuk AD, Kirilenko DA, Kukushkina YA, et al. Structure and properties of self-assembled graphene oxide—detonation nanodiamond composites. Fullerenes, Nanotubes and Carbon Nanostructures. 2024; 32(9): 887–895. doi: 10.1080/1536383x.2024.2340022
53. Wang C, Zhao J, Tian Z, et al. Low-temperature compositing of graphene to nanodiamonds by thermal reduction of graphene oxide and photocatalytic properties. Diamond and Related Materials. 2024; 143: 110919. doi: 10.1016/j.diamond.2024.110919
54. Ma Y, Fan B, Liu H, et al. Enhanced corrosion inhibition of aniline derivatives electropolymerized coatings on copper: Preparation, characterization and mechanism modeling. Applied Surface Science. 2020; 514: 146086. doi: 10.1016/j.apsusc.2020.146086
55. Samide A, Merisanu C, Tutunaru B, Iacobescu GE. Poly (vinyl butyral-co-vinyl alcohol-co-vinyl acetate) coating performance on copper corrosion in saline environment. Molecules. 2020; 25(3): 439. doi: 10.3390/molecules25030439
56. Kausar A. Formation and properties of poly (vinyl butyral-co-vinyl alcohol-co-vinyl acetate)/polystyrene composites reinforced with graphene oxide-nanodiamond. American Journal of Polymer Science. 2014; 4(2): 54–62.
57. Wang Q, Plylahan N, Shelke MV, et al. Nanodiamond particles/reduced graphene oxide composites as efficient supercapacitor electrodes. Carbon. 2014; 68: 175–184. doi: 10.1016/j.carbon.2013.10.077
58. Yu J, Qian R, Jiang P. Enhanced thermal conductivity for PVDF composites with a hybrid functionalized graphene sheet-nanodiamond filler. Fibers and Polymers. 2013; 14(8): 1317–1323. doi: 10.1007/s12221-013-1317-7
59. Li Y, Zhang D, Zhou B, et al. Synergistically enhancing electromagnetic interference shielding performance and thermal conductivity of polyvinylidene fluoride-based lamellar film with MXene and graphene. Composites Part A: Applied Science and Manufacturing. 2022; 157: 106945. doi: 10.1016/j.compositesa.2022.106945
60. Mahesh V, Harursampath D, Mahesh V. An experimental study on ballistic impact response of jute reinforced polyethylene glycol and nano silica based shear thickening fluid composite. Defence Technology. 2022; 18(3): 401–409. doi: 10.1016/j.dt.2021.03.013
61. Siripongpreda T, Hoven VP, Narupai B, Rodthongkum N. Emerging 3D printing based on polymers and nanomaterial additives: Enhancement of properties and potential applications. European Polymer Journal. 2023; 184: 111806. doi: 10.1016/j.eurpolymj.2022.111806
62. Prasad K, Rifai A, Recek N, et al. Nanocarbon-Polymer Composites for Next-Generation Breast Implant Materials. ACS Applied Materials & Interfaces. 2024; 16(38): 50251–50266. doi: 10.1021/acsami.4c08193
63. De Vita A, Galli G, Canning A, Car R. A microscopic model for surface-induced diamond-to-graphite transitions. Nature. 1996; 379(6565): 523–526. doi: 10.1038/379523a0
64. Opletal G, Chang SL, Barnard AS. Simulating facet-dependent aggregation and assembly of distributions of polyhedral nanoparticles. Nanoscale. 2020; 12(38): 19870–19879. doi: 10.1039/d0nr03470c
65. Shi Y, Su W, Yuan F, et al. Carbon Dots for Electroluminescent Light-Emitting Diodes: Recent Progress and Future Prospects. Advanced Materials. 2023; 35(44): e2210699. doi: 10.1002/adma.202210699
66. Li N, Zhang H, Yan F, Luo Y. Carbon Nanotube-Based High-Current Nanoscale Air-Channel Electronic Devices for Low-Power Ultrafast Electronics. ACS Applied Nano Materials. 2023; 6(20): 18926–18933. doi: 10.1021/acsanm.3c03388
67. Gupta SM, Sharma SK, Gupta N. Advances in Carbon Nanomaterials. In: Nanotechnology: A Quick Guide to Materials and Technologies. Bentham Science Publishers; 2024. pp. 152–204.
68. Cao A, Ci L, Wu G, et al. An effective way to lower catalyst content in well-aligned carbon nanotube films. Carbon. 2001; 39(1): 152–155
69. Liu Y, Zhao Z, Kang L, et al. Molecular Doping Modulation and Applications of Structure-Sorted Single-Walled Carbon Nanotubes: A Review. Small. 2023; 20(3): 2304075. doi: 10.1002/smll.202304075
70. Pirmoradian M, Torkan E, Zali H, et al. Statistical and parametric instability analysis for delivery of nanoparticles through embedded DWCNT. Physica A: Statistical Mechanics and its Applications. 2020; 554: 123911. doi: 10.1016/j.physa.2019.123911
71. Yeswanth IVS, Jha K, Bhowmik S, et al. Recent developments in RAM based MWCNT composite materials: a short review. Functional Composites and Structures. 2022; 4(2): 024001. doi: 10.1088/2631-6331/ac5730
72. Agrawal PM, Sudalayandi BS, Raff LM, Komanduri R. A comparison of different methods of Young’s modulus determination for single-wall carbon nanotubes (SWCNT) using molecular dynamics (MD) simulations. Computational Materials Science. 2006; 38(2): 271–281. doi: 10.1016/j.commatsci.2006.02.011
73. Ding X, Yu Y, Li W, et al. Multifunctional carbon nanotube hydrogels with on-demand removability for wearable electronics. Nano Today. 2024; 54: 102124. doi: 10.1016/j.nantod.2023.102124
74. Li Z, Liang J, Wei Z, et al. Lightweight foam-like nitrogen-doped carbon nanotube complex achieving highly efficient electromagnetic wave absorption. Journal of Materials Science & Technology. 2024; 168: 114–123. doi: 10.1016/j.jmst.2023.06.013
75. Li B, Liang W, Zhang L, et al. TPU/CNTs flexible strain sensor with auxetic structure via a novel hybrid manufacturing process of fused deposition modeling 3D printing and ultrasonic cavitation-enabled treatment. Sensors and Actuators A: Physical. 2022; 340: 113526. doi: 10.1016/j.sna.2022.113526
76. Cao D, Xu T, Zhang M, et al. Strengthening sandwich composites by laminating ultra-thin oriented carbon nanotube sheets at the skin/core interface. Composites Part B: Engineering. 2024; 280: 111496. doi: 10.1016/j.compositesb.2024.111496
77. Ong OZS, Ghayesh MH. Dynamic behaviour of carbon-nanotube reinforced functionally graded double-arch systems. International Journal of Engineering Science. 2024; 196: 104024. doi: 10.1016/j.ijengsci.2024.104024
78. Kim M, Goerzen D, Jena PV, et al. Human and environmental safety of carbon nanotubes across their life cycle. Nature Reviews Materials. 2024; 9(1): 63–81. doi: 10.1038/s41578-023-00611-8
79. Haque A, Sachan R, Narayan J. Synthesis of diamond nanostructures from carbon nanotube and formation of diamond-CNT hybrid structures. Carbon. 2019; 150: 388–395. doi: 10.1016/j.carbon.2019.05.027
80. Chatterjee S, Nafezarefi F, Tai NH, et al. Size and synergy effects of nanofiller hybrids including graphene nanoplatelets and carbon nanotubes in mechanical properties of epoxy composites. Carbon. 2012; 50(15): 5380–5386. doi: 10.1016/j.carbon.2012.07.021
81. Farooq U, Khurram A, Khan MS, et al. Carbon Nanotube/nanodiamond Reinforced Carbon Fiber Epoxy Matrix Composites–Processing and Characterization. NUST Journal of Engineering Sciences. 2013; 6(1): 1–4.
82. Zanin H, May PW, Hamanaka MHMO, et al. Field emission from hybrid diamond-like carbon and carbon nanotube composite structures. ACS Applied Materials & Interfaces. 2013; 5(23): 12238–12243. doi: 10.1021/am403386a
83. Khabashesku VN, Pulikkathara MX, Lobo R. Synthesis of carbon nanotube—nanodiamond hierarchical nanostructures and their polyurea nanocomposites. Russian Chemical Bulletin. 2013; 62(11): 2322–2326. doi: 10.1007/s11172-013-0337-1
84. Fedoseeva YV, Bulusheva LG, Okotrub AV, et al. Field emission luminescence of nanodiamonds deposited on the aligned carbon nanotube array. Scientific Reports. 2015; 5(1): 9379. doi: 10.1038/srep09379
85. Tang Q, Jiang H, Wu F, Shen J. Synthesis of nano-diamond modified Ti3C2Tx MXene heterostructure for enhanced electromagnetic wave absorption. Diamond and Related Materials. 2024; 149: 111663. doi: 10.1016/j.diamond.2024.111663
86. Zhu C, Wu J, Yan J, Liu X. Advanced fiber materials for wearable electronics. Advanced Fiber Materials. 2022; 5(1): 12–35. doi: 10.1007/s42765-022-00212-0
87. Sun J, Zhou D. Advances in Graphene—Polymer Nanocomposite Foams for Electromagnetic Interference Shielding. Polymers. 2023; 15(15): 3235. doi: 10.3390/polym15153235
88. Wang YY, Zhang F, Li N, et al. Carbon-based aerogels and foams for electromagnetic interference shielding: A review. Carbon. 2023; 205: 10–26. doi: 10.1016/j.carbon.2023.01.007
89. Wu T, Huan X, Zhang H, et al. The orientation and inhomogeneous distribution of carbon nanofibers and distinctive internal structure in polymer composites induced by 3D-printing enabling electromagnetic shielding regulation. Journal of Colloid and Interface Science. 2023; 638: 392–402. doi: 10.1016/j.jcis.2023.02.014
90. Xueqi L, Xiaojie L, Honghao Y, et al. Gas detonation-prepared nano-carbon-based capsule matrix materials: Characterisation and microwave-absorption properties. Materials Science and Technology. 2023; 39(16): 2515–2524. doi: 10.1080/02670836.2023.2210436
91. Song P, Liu B, Liang C, et al. Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Letters. 2021; 13(1). doi: 10.1007/s40820-021-00624-4
92. Song X, Chen X, Zhang Z, et al. Nanodiamond@hollow carbon sphere architectures for synergistically enhanced electromagnetic absorption and thermal insulation. Diamond and Related Materials. 2024; 141: 110631. doi: 10.1016/j.diamond.2023.110631
93. Shang B, Yang G, Zhang B. Phase change nanocapsules incorporated with nanodiamonds for efficient photothermal energy conversion and storage. Applied Energy. 2024; 360: 122806. doi: 10.1016/j.apenergy.2024.122806
94. Busarello TDC, Simões MG, Pomilio JA. Semiconductor diodes and transistors. In: Power Electronics Handbook. Elsevier; 2024. pp. 17–52.
95. Hasan MM, Wang C, Pala N, Shur M. Diamond for High-Power, High-Frequency, and Terahertz Plasma Wave Electronics. Nanomaterials. 2024; 14(5): 460. doi: 10.3390/nano14050460
96. Ahmad RK, Parada AC, Jackman RB. Nanodiamond-gated silicon ion-sensitive field effect transistor. Applied Physics Letters. 2011; 98(15). doi: 10.1063/1.3568887
97. Hsu SH, Kang WP, Wisitsora-at A, Davidson JL. Nitrogen-incorporated nanodiamond vacuum field emission transistor with vertically configured self-aligning gate. Diamond and Related Materials. 2012; 22: 142–146.
98. Fei H, Sang D, Zou L, et al. Research progress of optoelectronic devices based on diamond materials. Frontiers in Physics. 2023; 11: 1226374. doi: 10.3389/fphy.2023.1226374
99. Zhao F, Vrajitoarea A, Jiang Q, et al. Graphene-nanodiamond heterostructures and their application to high current devices. Scientific Reports. 2015; 5(1): 13771. doi: 10.1038/srep13771
100. Zhao Y, Li H, Tang R, et al. Photo-assisted asymmetric supercapacitors based on dual photoelectrodes for enhanced photoelectric energy storage. Journal of Materials Chemistry A. 2023; 11(29): 15844–15854. doi: 10.1039/d3ta01461d
101. Zhang M, Nautiyal A, Du H, et al. Electropolymerization of polyaniline as high-performance binder free electrodes for flexible supercapacitor. Electrochimica Acta. 2021; 376: 138037. doi: 10.1016/j.electacta.2021.138037
102. Suman S, Sharma DK, Szabo O, et al. Vertically aligned boron-doped diamond nanostructures as highly efficient electrodes for electrochemical supercapacitors. Journal of Materials Chemistry A. 2024; 12(32): 21134–21147. doi: 10.1039/d3ta07728d
103. Lu Z, Xie J, Yang X, et al. Prompt Thermal Transfer Across the sp3–sp2 Interfaces for the Enhanced Electrochemical Performance of Aqueous Carbon-Based Supercapacitors. Industrial & Engineering Chemistry Research. 2024; 63(11): 4886–4896. doi: 10.1021/acs.iecr.3c04667
104. Mohammadkhani R, Shojaei A, Rahmani P, et al. Synthesis and characterization of polyaniline/nanodiamond hybrid nanostructures with various morphologies to enhance the corrosion protection performance of epoxy coating. Diamond and Related Materials. 2021; 120: 108672. doi: 10.1016/j.diamond.2021.108672
105. S. BS, Palaniappan S, Srinivas P. Nano fibre polyaniline containing long chain and small molecule dopants and carbon composites for supercapacitor. Electrochimica Acta. 2013; 95: 251–259. doi: 10.1016/j.electacta.2013.02.040
106. Kovalenko I, Bucknall DG, Yushin G. Detonation nanodiamond and onion‐like‐carbon‐embedded polyaniline for supercapacitors. Advanced Functional Materials. 2010; 20(22): 3979–3986. doi: 10.1002/adfm.201000906
107. Gao XW, Zhao ZW, He Y, et al. Nanodiamond: a promising metal-free nanoscale material in photocatalysis and electrocatalysis. Rare Metals. 2024; 43(8): 3501–3552. doi: 10.1007/s12598-023-02513-8
108. Ji L, Meduri P, Agubra V, et al. Graphene‐based nanocomposites for energy storage. Advanced Energy Materials. 2016; 6(16): 1502159. doi: 10.1002/aenm.201502159
109. Wang H, Cui Y. Nanodiamonds for energy. Carbon Energy. 2019; 1(1): 13–18. doi: 10.1002/cey2.9
110. Raj B, Kaladhar K. Nanomaterials for biomedical applications. In: Nanomedicine in Translational Research. Elsevier; 2025. pp. 107–139.
111. Yang Y, Wang Z, Shi P, Zhang W. Exploring Diamond Nanoneedle Arrays: Fabrication and Emerging Applications in Biomedical Engineering. Accounts of Materials Research. 2024; 5(3): 259–270. doi: 10.1021/accountsmr.3c00212
112. Charasseangpaisarn T, Wiwatwarrapan C, Thunyakitpisal P, Srimaneepong V. Development of poly (methyl methacrylate)/poly (lactic acid) blend as sustainable biomaterial for dental applications. Scientific Reports. 2023; 13(1): 16904. doi: 10.1038/s41598-023-44150-2
113. El-Masry EH, Mohamed TM, Metwally SS. Post-irradiation physicochemical features of polymer composite for the removal of Co(Ⅱ) and Nd(Ⅲ) from aqueous solutions. Environmental Science and Pollution Research. 2023; 30(5): 11661–11674. doi: 10.1007/s11356-022-22862-8
114. Wang P, Hou Z, Wang Z, Luo X. Multifunctional Therapeutic Nanodiamond Hydrogels for Infected-Wound Healing and Cancer Therapy. ACS Applied Materials & Interfaces. 2024; 16(8): 9656–9668. doi: 10.1021/acsami.3c13464
115. Ostadhossein F, Mahmoudi N, Morales-Cid G, et al. Development of chitosan/bacterial cellulose composite films containing nanodiamonds as a potential flexible platform for wound dressing. Materials. 2015; 8(9): 6401–6418. doi: 10.3390/ma8095309
116. Jiwanti PK, Dewi FRP, Wardhana B. Nanodiamond-Based Materials for Biomedical Sensors and Drug Delivery. In: Nanomaterials for Biomedical and Bioengineering Applications. Springer; 2024. pp. 323–340.
117. Silva LRG, Carvalho JHS, Stefano JS, et al. Electrochemical sensors and biosensors based on nanodiamonds: A review. Materials Today Communications. 2023; 35: 106142. doi: 10.1016/j.mtcomm.2023.106142
118. Qureshi SA, Hsiao WWW, Hussain L, et al. Recent development of fluorescent nanodiamonds for optical biosensing and disease diagnosis. Biosensors. 2022; 12(12): 1181. doi: 10.3390/bios12121181
119. Katime I, Cadenato A. Compatibility of peo/poly (iso-butyl methacrylate) and peo/poly (tert-butyl methacrylate) blends by DTA. Materials Letters. 1995; 22(5–6): 303–308.
120. Novakovic K, Katsikas L, Popovic I. The thermal degradation of poly (iso-butyl methacrylate) and poly (sec-butyl methacrylate). Journal of the Serbian Chemical Society. 2000; 65(12): 867–875. doi: 10.2298/jsc0012867n
121. More N, Avhad M, Utekar S, More A. Polylactic acid (PLA) membrane—significance, synthesis, and applications: a review. Polymer Bulletin. 2022; 80(2): 1117–1153. doi: 10.1007/s00289-022-04135-z
122. Biswal T. Recent Progress in PLA-BasedComposite and their Application to Biomedical and Cosmetic Fields. In: Biopolymers in Pharmaceutical and Food Applications. Wiley-VCH; 2024. pp. 497–530.
123. Yao Y, Xue Y. Impedance analysis of quartz crystal microbalance humidity sensors based on nanodiamond/graphene oxide nanocomposite film. Sensors and Actuators B: Chemical. 2015; 211: 52–58. doi: 10.1016/j.snb.2014.12.134
DOI: https://doi.org/10.24294/jpse10390
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Ayesha Kausar
License URL: https://creativecommons.org/licenses/by/4.0/
This site is licensed under a Creative Commons Attribution 4.0 International License.